Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Proteome Res ; 22(7): 2400-2410, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37248202

ABSTRACT

Many tools have been created to generate in silico proteome digests with different protease enzymes and provide useful information for selecting optimal digest schemes for specific needs. This can save on time and resources and generate insights on the observable proteome. However, there remains a need for a tool that evaluates digest schemes beyond protein and amino acid coverages in the proteomic domain. Here, we present ProtView, a versatile in silico protease combination digest evaluation workflow that maps in silico-digested peptides to both protein and genome references, so that the potential observable portions of the proteome, transcriptome, and genome can be identified. The proteomic identification and quantification of evidence for transcriptional, co-transcriptional, post-transcriptional, translational, and post-translational regulation can all be examined in silico with ProtView prior to an experiment. Benchmarking against biological data comparing multiple proteases shows that ProtView can correctly estimate performances among the digest schemes. ProtView provides this information in a way that is easy to interpret, allowing for digest schemes to be evaluated before carrying out an experiment, in context that can optimize both proteomic and proteogenomic experiments. ProtView is available at https://github.com/SSPuliasis/ProtView.


Subject(s)
Peptide Hydrolases , Proteogenomics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Proteomics , Proteome/metabolism , Peptides/chemistry , Endopeptidases
2.
Front Physiol ; 14: 1124938, 2023.
Article in English | MEDLINE | ID: mdl-36935746

ABSTRACT

Growth and maturation of the fetal gastrointestinal tract near term prepares the offspring for the onset of enteral nutrition at birth. Structural and functional changes are regulated by the prepartum rise in cortisol in the fetal circulation, although the role of the coincident rise in plasma tri-iodothyronine (T3) is unknown. This study examined the effect of hypothyroidism on the structural development of the gastrointestinal tract and the activity of brush-border digestive enzymes in the ovine fetus near term. In intact fetuses studied between 100 and 144 days of gestation (dGA; term ∼145 days), plasma concentrations of T3, cortisol and gastrin; the mucosal thickness in the abomasum, duodenum, jejunum and ileum; and intestinal villus height and crypt depth increased with gestational age. Removal of the fetal thyroid gland at 105-110 dGA suppressed plasma thyroxine (T4) and T3 concentrations to the limit of assay detection in fetuses studied at 130 and 144 dGA, and decreased plasma cortisol and gastrin near term, compared to age-matched intact fetuses. Hypothyroidism was associated with reductions in the relative weights of the stomach compartments and small intestines, the outer perimeter of the intestines, the thickness of the gastric and intestinal mucosa, villus height and width, and crypt depth. The thickness of the mucosal epithelial cell layer and muscularis propria in the small intestines were not affected by gestational age or treatment. Activities of the brush border enzymes varied with gestational age in a manner that depended on the enzyme and region of the small intestines studied. In the ileum, maltase and dipeptidyl peptidase IV (DPPIV) activities were lower, and aminopeptidase N (ApN) were higher, in the hypothyroid compared to intact fetuses near term. These findings highlight the importance of thyroid hormones in the structural and functional development of the gastrointestinal tract near term, and indicate how hypothyroidism in utero may impair the transition to enteral nutrition and increase the risk of gastrointestinal disorders in the neonate.

3.
J Exp Bot ; 73(5): 1464-1482, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34758083

ABSTRACT

Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.


Subject(s)
Hordeum , Proteome , Flowers , Hordeum/genetics , Hordeum/metabolism , Meiosis , Meiotic Prophase I , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/metabolism
4.
Front Plant Sci ; 11: 619404, 2020.
Article in English | MEDLINE | ID: mdl-33510760

ABSTRACT

In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley (Hordeum vulgare) anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene-zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I-tetrad. Our analysis reveals that the pre-meiotic anthers are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologs showed differential transcript abundance in at least one stage or tissue comparison. Argonautes, E3 ubiquitin ligases, and lys48 specific de-ubiquitinating enzymes were enriched in prophase I meiocyte samples. These developmental, time-resolved transcriptomes demonstrate remarkable stability in transcript abundance in meiocytes throughout prophase I after the initial and substantial reprogramming at meiosis entry and the complexity of the regulatory networks involved in early meiotic processes.

5.
Front Plant Sci ; 10: 393, 2019.
Article in English | MEDLINE | ID: mdl-31001307

ABSTRACT

Meiosis is a highly dynamic and precisely regulated process of cell division, leading to the production of haploid gametes from one diploid parental cell. In the crop plant barley (Hordeum vulgare), male meiosis occurs in anthers, in specialized cells called meiocytes. Barley meiotic tissue is scarce and not easily accessible, making meiosis study a challenging task. We describe here a new micro-proteomics workflow that allows sensitive and reproducible genome-wide label-free proteomic analysis of individual staged barley anthers. This micro-proteomic approach detects more than 4,000 proteins from such small amounts of material as two individual anthers, covering a dynamic range of protein relative abundance levels across five orders of magnitude. We applied our micro-proteomics workflow to investigate the proteome of the developing barley anther containing pollen mother cells in the early stages of meiosis and we successfully identified 57 known and putative meiosis-related proteins. Meiotic proteins identified in our study were found to be key players of many steps and processes in early prophase such as: chromosome condensation, synapsis, DNA double-strand breaks or crossover formation. Considering the small amount of starting material, this work demonstrates an important technological advance in plant proteomics and can be applied for proteomic examination of many size-limited plant specimens. Moreover, it is the first insight into the proteome of individual barley anther at early meiosis. The proteomic data have been deposited to the ProteomeXchange with the accession number PXD010887.

6.
Theor Appl Genet ; 131(6): 1287-1297, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29560514

ABSTRACT

KEY MESSAGE: A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62-56.98 Mb.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Solanum/genetics , Chromosome Mapping , DNA, Plant/genetics , Diploidy , Genetic Markers , Phytophthora infestans , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Solanum/microbiology
7.
Nucleic Acids Res ; 45(9): 5061-5073, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28402429

ABSTRACT

Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , Genes, Insect , Transcriptome , Genetic Variation , Proteomics , RNA, Untranslated , Reference Values , Reproducibility of Results , Sequence Analysis, RNA , Transcription, Genetic
8.
New Phytol ; 203(2): 424-436, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24749484

ABSTRACT

This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence.


Subject(s)
Alternative Splicing , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Carbohydrate Epimerases/metabolism , Arabidopsis Proteins/genetics , Carbohydrate Epimerases/genetics , Exons , Gene Expression Regulation, Plant , Genes, Reporter , Mutation , Nuclear Proteins/genetics , Plants, Genetically Modified , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/genetics , Splicing Factor U2AF , Nicotiana/genetics , beta-Fructofuranosidase/genetics
9.
PLoS One ; 8(8): e72207, 2013.
Article in English | MEDLINE | ID: mdl-23977254

ABSTRACT

Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is a powerful technique for comparative quantitative proteomics, which has recently been applied to a number of different eukaryotic organisms. Inefficient incorporation of labelled amino acids in cell cultures of Arabidopsis thaliana has led to very limited use of SILAC in plant systems. We present a method allowing, for the first time, efficient labelling with stable isotope-containing arginine and lysine of whole Arabidopsis seedlings. To illustrate the utility of this method, we have combined the high labelling efficiency (>95%) with quantitative proteomics analyses of seedlings exposed to increased salt concentration. In plants treated for 7 days with 80 mM NaCl, a relatively mild salt stress, 215 proteins were identified whose expression levels changed significantly compared to untreated seedling controls. The 92 up-regulated proteins included proteins involved in abiotic stress responses and photosynthesis, while the 123 down-regulated proteins were enriched in proteins involved in reduction of oxidative stress and other stress responses, respectively. Efficient labelling of whole Arabidopsis seedlings by this modified SILAC method opens new opportunities to exploit the genetic resources of Arabidopsis and analyse the impact of mutations on quantitative protein dynamics in vivo.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Isotope Labeling/methods , Seedlings/genetics , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arginine/metabolism , Carbon Isotopes , Cell Culture Techniques , Deuterium , Lysine/metabolism , Molecular Sequence Data , Proteomics , Salinity , Seedlings/drug effects , Seedlings/metabolism , Sodium Chloride/pharmacology , Stress, Physiological
10.
Nucleic Acids Res ; 40(6): 2454-69, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22127866

ABSTRACT

Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT-PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5' or 3'UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3'-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , Gene Expression Regulation, Plant , Genes, Regulator , Nonsense Mediated mRNA Decay , 3' Untranslated Regions , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Codon, Initiator , Codon, Nonsense , Cycloheximide/pharmacology , Genes, Plant , Introns , Nonsense Mediated mRNA Decay/drug effects , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Helicases/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
11.
Biochem Soc Trans ; 38(2): 667-71, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20298240

ABSTRACT

AS (alternative splicing) is a post-transcriptional process which regulates gene expression through increasing protein complexity and modulating mRNA transcript levels. Regulation of AS depends on interactions between trans-acting protein factors and cis-acting signals in the pre-mRNA (precursor mRNA) transcripts, termed 'combinatorial' control. Dynamic changes in AS patterns reflect changes in abundance, composition and activity of splicing factors in different cell types and in response to cellular or environmental cues. Whereas the SR protein family of splicing factors is well-studied in plants, relatively little is known about other factors influencing the regulation of AS or the consequences of AS on mRNA levels and protein function. To address fundamental questions on AS in plants, we are exploiting a high-resolution RT (reverse transcription)-PCR system to analyse multiple AS events simultaneously. In the present paper, we describe the current applications and development of the AS RT-PCR panel in investigating the roles of splicing factors, cap-binding proteins and nonsense-mediated decay proteins on AS, and examining the extent of AS in genes involved in the same developmental pathway or process.


Subject(s)
Alternative Splicing/physiology , Gene Expression Regulation, Plant/genetics , Plants/genetics , Alternative Splicing/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Models, Biological , Plant Development , Plants/metabolism
12.
Nucleic Acids Res ; 38(1): 265-78, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19864257

ABSTRACT

The nuclear cap-binding protein complex (CBC) participates in 5' splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT-PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5' and 3' splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5' splice site.


Subject(s)
Alternative Splicing , Arabidopsis Proteins/physiology , Arabidopsis/genetics , Gene Expression Regulation, Plant , RNA-Binding Proteins/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Introns , Mutation , Protein Subunits/genetics , RNA Splice Sites , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction
13.
Plant Cell ; 21(7): 2045-57, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19602621

ABSTRACT

The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Nucleolus/metabolism , RNA, Messenger/genetics , Dermoscopy
14.
Biochem Soc Trans ; 36(Pt 3): 508-10, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18481991

ABSTRACT

The impact of AS (alternative splicing) is well-recognized in animal systems as a key regulator of gene expression and proteome complexity. In plants, AS is of growing importance as more genes are found to undergo AS, but relatively little is known about the factors regulating AS or the consequences of AS on mRNA levels and protein function. We have established an accurate and reproducible RT (reverse transcription)-PCR system to analyse AS in multiple genes. Initial studies have identified new AS events confirming that current values for the frequency of AS in plants are likely to be underestimates.


Subject(s)
Alternative Splicing/genetics , Plants/genetics , Gene Expression Regulation, Plant , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Mol Biol Cell ; 16(1): 260-9, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15496452

ABSTRACT

The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance.


Subject(s)
Arabidopsis/metabolism , Cell Nucleolus/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Exons , Gene Expression Regulation, Plant , Genes, Plant , Green Fluorescent Proteins/metabolism , Image Processing, Computer-Assisted , Mass Spectrometry , Microscopy, Fluorescence , Proteomics , RNA/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Sequence Analysis, DNA
16.
Plant Cell ; 16(5): 1340-52, 2004 May.
Article in English | MEDLINE | ID: mdl-15100401

ABSTRACT

Factors affecting splicing of plant U12-dependent introns have been examined by extensive mutational analyses in an in vivo tobacco (Nicotiana tabacum) protoplast system using introns from three different Arabidopsis thaliana genes: CBP20, GSH2, and LD. The results provide evidence that splicing efficiency of plant U12 introns depends on a combination of factors, including UA content, exon bridging interactions between the U12 intron and flanking U2-dependent introns, and exon splicing enhancer sequences (ESEs). Unexpectedly, all three plant U12 introns required an adenosine at the upstream purine position in the branchpoint consensus UCCUURAUY. The exon upstream of the LD U12 intron is a major determinant of its higher level of splicing efficiency and potentially contains two ESE regions. These results suggest that in plants, U12 introns represent a level at which expression of their host genes can be regulated.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Introns/genetics , Ribonucleoproteins, Small Nuclear/genetics , Base Sequence , RNA Splicing/genetics , RNA, Plant/genetics , RNA-Binding Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Transfection
17.
Gene ; 283(1-2): 171-83, 2002 Jan 23.
Article in English | MEDLINE | ID: mdl-11867224

ABSTRACT

In this report we characterize two Arabidopsis thaliana proteins, named AtCBP20 and AtCBP80, that are homologues of human subunits of a nuclear cap-binding protein complex (CBC). AtCBP20 has a calculated molecular mass of 29.9 kDa, and AtCBP80 is a 96.5 kDa protein. AtCBP20 exhibits 68% identity and 82% similarity to human CBP20. Like its human homologue, AtCBP20 contains a canonical RNA binding domain (RBD) with single RNP2 and RNP1 motifs. In addition to the N-terminal part, which is similar to the human protein, AtCBP20 has a long C-terminus rich in arginine, glycine and aspartate residues. The second subunit of the Arabidopsis cap-binding complex, AtCBP80, shows 28% identity and 50% similarity to its homologue from HeLa cells. The protein contains a MIF4G domain at its N-terminus, the feature characteristic to all analyzed CBP80s. This domain, described also in eIF4G and NMD2 proteins, is thought to be involved in protein-protein and also in protein--RNA interactions. Both proteins AtCBP20 and AtCBP80 are encoded by single-copy genes in the A. thaliana genome. The AtCBP20 gene is located on chromosome V, and the AtCBP80 gene is encoded by chromosome II. Among introns identified in the AtCBP20 gene, we discovered an U12 type intervening sequence (an AT-AC intron). This intron is spliced out very efficiently in plants, but when isolated and tested for splicing in tobacco protoplasts, the efficiency of the U12 intron excision was low. Splicing efficiency of the U12 intron is improved by the addition of exon and intron sequences upstream or downstream of the U12 intron. AtCBP20 and AtCBP80 are constitutively expressed in all examined organs of A. thaliana, including roots, stems, leaves and flowers. Interestingly, the steady-state level of both transcripts seem to be very similar in all tissues analyzed.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , RNA-Binding Proteins/genetics , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Plant , Genes, Plant/genetics , Introns/genetics , Molecular Sequence Data , Protein Subunits , Protoplasts/metabolism , RNA-Binding Proteins/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Nicotiana/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...