Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
2.
Euro Surveill ; 29(3)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240057

ABSTRACT

Under International Health Regulations from 2005, a human infection caused by a novel influenza A virus variant is considered an event that has potential for high public health impact and is immediately notifiable to the World Health Organisation. We here describe the clinical, epidemiological and virological features of a confirmed human case of swine influenza A(H1N2)v in England detected through community respiratory virus surveillance. Swabbing and contact tracing helped refine public health risk assessment, following this unusual and unexpected finding.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Humans , Swine , Influenza A Virus, H1N2 Subtype , Influenza A Virus, H1N1 Subtype/genetics , Swine Diseases/diagnosis , Swine Diseases/epidemiology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , England/epidemiology
3.
J Virol ; 97(10): e0074323, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800947

ABSTRACT

IMPORTANCE: Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.


Subject(s)
Antigenic Drift and Shift , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Coturnix , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry
4.
Microbiol Spectr ; 11(4): e0477622, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358418

ABSTRACT

Since 2020, the United Kingdom and Europe have experienced annual epizootics of high-pathogenicity avian influenza virus (HPAIV). The first epizootic, during the autumn/winter of 2020-2021, involved six H5Nx subtypes, although H5N8 HPAIV dominated in the United Kingdom. While genetic assessments of the H5N8 HPAIVs within the United Kingdom demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes.  Following a small number of detections of H5N1 in wild birds over the summer of 2021, the autumn/winter of 2021-2022 saw another European H5 HPAIV epizootic that dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggest that the H5N1 viruses circulating in Europe during late 2020 continued to circulate in wild birds throughout 2021, with minimal adaptation, but then went on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the United Kingdom over two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk, and whether incidents of lateral spread can be defined over independent incursions of infections from wild birds. This provides key supporting data for mitigation activities. IMPORTANCE High-pathogenicity avian influenza virus (HPAIV) outbreaks devastate avian species across all sectors, having both economic and ecological impacts through mortalities in poultry and wild birds, respectively. These viruses can also represent a significant zoonotic risk. Since 2020, the United Kingdom has experienced two successive outbreaks of H5 HPAIV. While H5N8 HPAIV was predominant during the 2020-2021 outbreak, other H5 subtypes were also detected. The following year, there was a shift in the subtype dominance to H5N1 HPAIV, but multiple H5N1 genotypes were detected. Through the thorough utilization of whole-genome sequencing, it was possible to track and characterize the genetic evolution of these H5 HPAIVs in United Kingdom poultry and wild birds. This enabled us to assess the risk posed by these viruses at the poultry-wild bird and the avian-human interfaces and to investigate the potential lateral spread between infected premises, a key factor in understanding the threat to the commercial sector.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Humans , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A virus/genetics , Animals, Wild , Birds , United Kingdom/epidemiology , Poultry , Genetic Variation , Phylogeny
5.
Front Plant Sci ; 14: 1130910, 2023.
Article in English | MEDLINE | ID: mdl-36875611

ABSTRACT

Newcastle disease (ND) is a highly contagious viral respiratory and neurological disease that has a severe impact on poultry production worldwide. In the present study, an expression platform was established for the transient production in N.bethamiana of ND virus-like particles (VLPs) for use as vaccines against ND. The expression of the ND Fusion (F) and/or Hemagglutinin-neuraminidase (HN) proteins of a genotype VII.2 strain formed ND VLPs in planta as visualized under the transmission electron microscope, and HN-containing VLPs agglutinated chicken erythrocytes with hemagglutination (HA) titres of up to 13 log2.The immunogenicity of the partially-purified ND VLPs was confirmed in specific-pathogen-free White leghorn chickens. Birds receiving a single intramuscular immunization with 1024 HA units (10 log2) of the F/HN ND VLPs administered with 20% [v/v] Emulsigen®-P adjuvant, seroconverted after 14 days with F- and HN-specific antibodies at ELISA titres of 5705.17 and HI geometric mean titres (GMTs) of 6.2 log2, respectively. Furthermore, these ND-specific antibodies successfully inhibited viral replication in vitro of two antigenically closely-related ND virus isolates, with virus-neutralization test GMTs of 3.47 and 3.4, respectively. Plant-produced ND VLPs have great potential as antigen-matched vaccines for poultry and other avian species that are highly immunogenic, cost-effective, and facilitate prompt updating to ensure improved protection against emerging ND field viruses.

6.
J Med Microbiol ; 72(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36748620

ABSTRACT

Swine influenza is an acute respiratory disease of swine caused by swine influenza A virus (SwIAV). The ability of SwIAV to spread bidirectionally from animals to humans (zoonotic), and from humans to animals (reverse zoonotic), drives coinfection that can result in gene segment exchange and elevates the risk of generating viruses with pandemic potential. Compared to human-origin influenza A viruses, current data indicate a greater diversity amongst circulating SwIAVs, with three major subtypes (classified by haemagglutinin and neuraminidase) circulating globally in swine (H1N1, H1N2 and H3N2). The lack of protection afforded by human seasonal influenza vaccines against SwIAVs exacerbates the risk associated with reassortment of human, swine and potentially avian viruses. As such, global monitoring of SwIAVs is important for both human and animal health as they represent a true 'One Health' challenge with pandemic potential.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Humans , Swine , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Influenza A virus/genetics , Swine Diseases/epidemiology
7.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36851547

ABSTRACT

Human-to-swine transmission of influenza A (H3N2) virus occurs repeatedly and plays a critical role in swine influenza A virus (IAV) evolution and diversity. Human seasonal H3 IAVs were introduced from human-to-swine in the 1990s in the United States and classified as 1990.1 and 1990.4 lineages; the 1990.4 lineage diversified into 1990.4.A-F clades. Additional introductions occurred in the 2010s, establishing the 2010.1 and 2010.2 lineages. Human zoonotic cases with swine IAV, known as variant viruses, have occurred from the 1990.4 and 2010.1 lineages, highlighting a public health concern. If a variant virus is antigenically drifted from current human seasonal vaccine (HuVac) strains, it may be chosen as a candidate virus vaccine (CVV) for pandemic preparedness purposes. We assessed the zoonotic risk of US swine H3N2 strains by performing phylogenetic analyses of recent swine H3 strains to identify the major contemporary circulating genetic clades. Representatives were tested in hemagglutination inhibition assays with ferret post-infection antisera raised against existing CVVs or HuVac viruses. The 1990.1, 1990.4.A, and 1990.4.B.2 clade viruses displayed significant loss in cross-reactivity to CVV and HuVac antisera, and interspecies transmission potential was subsequently investigated in a pig-to-ferret transmission study. Strains from the three lineages were transmitted from pigs to ferrets via respiratory droplets, but there were differential shedding profiles. These data suggest that existing CVVs may offer limited protection against swine H3N2 infection, and that contemporary 1990.4.A viruses represent a specific concern given their widespread circulation among swine in the United States and association with multiple zoonotic cases.


Subject(s)
Influenza A virus , Influenza, Human , Viral Vaccines , Humans , Animals , Swine , Ferrets , Influenza A Virus, H3N2 Subtype/genetics , Phylogeny , Immune Sera , Influenza, Human/epidemiology
8.
Emerg Infect Dis ; 29(1): 170-174, 2023 01.
Article in English | MEDLINE | ID: mdl-36573541

ABSTRACT

In late 2021, highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses were detected in domestic ducks in poultry markets in Cambodia. Surveillance, biosafety, and biosecurity efforts should be bolstered along the poultry value chain to limit spread and infection risk at the animal-human interface.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Humans , Influenza in Birds/epidemiology , Cambodia/epidemiology , Birds , Ducks , Poultry , Phylogeny
9.
Microbiol Spectr ; 10(6): e0178122, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36318009

ABSTRACT

The first pandemic of the 21st century was caused by an H1N1 influenza A virus (IAV) introduced from pigs into humans, highlighting the importance of swine as reservoirs for pandemic viruses. Two major lineages of swine H1 circulate in North America: the 1A classical swine lineage (including that of the 2009 H1N1 pandemic) and the 1B human seasonal-like lineage. Here, we investigated the evolution of these H1 IAV lineages in North American swine and their potential pandemic risk. We assessed the antigenic distance between the HA of representative swine H1 and human seasonal vaccine strains (1978 to 2015) in hemagglutination inhibition (HI) assays using a panel of monovalent antisera raised in pigs. Antigenic cross-reactivity varied by strain but was associated with genetic distance. Generally, the swine 1A lineage viruses that seeded the 2009 H1 pandemic were antigenically most similar to the H1 pandemic vaccine strains, with the exception of viruses in the genetic clade 1A.1.1.3, which had a two-amino acid deletion mutation near the receptor-binding site, which dramatically reduced antibody recognition. The swine 1B lineage strains, which arose from previously circulating (pre-2009 pandemic) human seasonal viruses, were more antigenically similar to pre-2009 human seasonal H1 vaccine viruses than post-2009 strains. Human population immunity was measured by cross-reactivity in HI assays to representative swine H1 strains. There was a broad range of titers against each swine strain that was not associated with age, sex, or location. However, there was almost no cross-reactivity in human sera to the 1A.1.1.3 and 1B.2.1 genetic clades of swine viruses, and the 1A.1.1.3 and 1B.2.1 clades were also the most antigenically distant to the human vaccine strains. Our data demonstrate that the antigenic distances of representative swine strains from human vaccine strains represent an important part of the rational assessment of swine IAV for zoonotic risk research and pandemic preparedness prioritization. IMPORTANCE Human H1 influenza A viruses (IAV) spread to pigs in North America, resulting in a sustained circulation of two major groups of H1 viruses in swine. We quantified the genetic diversity of H1 in swine and measured antigenic phenotypes. We demonstrated that the swine H1 lineages were significantly different from the human vaccine strains and that this antigenic dissimilarity increased over time as the viruses evolved in swine. Pandemic preparedness vaccine strains for human vaccines also demonstrated a loss in similarity with contemporary swine strains. Human sera revealed a range of responses to swine IAV, including two groups of viruses with little to no immunity. The surveillance and risk assessment of IAV diversity in pig populations are essential to detect strains with reduced immunity in humans and provide critical information for pandemic preparedness.


Subject(s)
Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Antigens, Viral/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Swine/virology , Swine Diseases/epidemiology , Swine Diseases/virology
10.
Viruses ; 14(11)2022 10 29.
Article in English | MEDLINE | ID: mdl-36366493

ABSTRACT

During the last decade, endemic swine H1 influenza A viruses (IAV) from six different genetic clades of the hemagglutinin gene caused zoonotic infections in humans. The majority of zoonotic events with swine IAV were restricted to a single case with no subsequent transmission. However, repeated introduction of human-seasonal H1N1, continual reassortment between endemic swine IAV, and subsequent drift in the swine host resulted in highly diverse swine IAV with human-origin genes that may become a risk to the human population. To prepare for the potential of a future swine-origin IAV pandemic in humans, public health laboratories selected candidate vaccine viruses (CVV) for use as vaccine seed strains. To assess the pandemic risk of contemporary US swine H1N1 or H1N2 strains, we quantified the genetic diversity of swine H1 HA genes, and identified representative strains from each circulating clade. We then characterized the representative swine IAV against human seasonal vaccine and CVV strains using ferret antisera in hemagglutination inhibition assays (HI). HI assays revealed that 1A.3.3.2 (pdm09) and 1B.2.1 (delta-2) demonstrated strong cross reactivity to human seasonal vaccines or CVVs. However, swine IAV from three clades that represent more than 50% of the detected swine IAVs in the USA showed significant reduction in cross-reactivity compared to the closest CVV virus: 1A.1.1.3 (alpha-deletion), 1A.3.3.3-clade 3 (gamma), and 1B.2.2.1 (delta-1a). Representative viruses from these three clades were further characterized in a pig-to-ferret transmission model and shown to exhibit variable transmission efficiency. Our data prioritize specific genotypes of swine H1N1 and H1N2 to further investigate in the risk they pose to the human population.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Humans , Ferrets , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/epidemiology , Cowpox virus , Immune Sera , Swine Diseases/epidemiology
11.
Virus Evol ; 8(2): veac077, 2022.
Article in English | MEDLINE | ID: mdl-36105667

ABSTRACT

From 2016 to 2020, high pathogenicity avian influenza (HPAI) H5 viruses circulated in Asia, Europe, and Africa, causing waves of infections and the deaths of millions of wild and domestic birds and presenting a zoonotic risk. In late 2021, H5N1 HPAI viruses were isolated from poultry in Canada and also retrospectively from a great black-backed gull (Larus marinus), raising concerns that the spread of these viruses to North America was mediated by migratory wild bird populations. In February and April 2022, H5N1 HPAI viruses were isolated from a bald eagle (Haliaeetus leucocephalus) and broiler chickens in British Columbia, Canada. Phylogenetic analysis showed that the virus from bald eagle was genetically related to H5N1 HPAI virus isolated in Hokkaido, Japan, in January 2022. The virus identified from broiler chickens was a reassortant H5N1 HPAI virus with unique constellation genome segments containing PB2 and NP from North American lineage LPAI viruses, and the remaining gene segments were genetically related to the original Newfoundland-like H5N1 HPAI viruses detected in November and December 2021 in Canada. This is the first report of H5 HPAI viruses' introduction to North America from the Pacific and the North Atlantic-linked flyways and highlights the expanding risk of genetically distinct virus introductions from different geographical locations and the potential for local reassortment with both the American lineage LPAI viruses in wild birds and with both Asian-like and European-like H5 HPAI viruses. We also report the presence of some amino acid substitutions across each segment that might contribute to the replicative efficiency of these viruses in mammalian host, evade adaptive immunity, and pose a potential zoonotic risk.

12.
mBio ; 13(4): e0060922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35726917

ABSTRACT

Phylogenetic evidence from the recent resurgence of high-pathogenicity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European wild birds and poultry since October 2021, suggests at least two different and distinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident viruses have been maintained, presumably in wild birds, in northern Europe throughout the summer of 2021 to cause some of the outbreaks that are part of the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were reintroduced by migratory birds, and these two sources of reintroduction have driven the HPAI resurgence. Viruses from these two principal sources can be distinguished by their hemagglutinin genes, which segregate into two distinct sublineages (termed B1 and B2) within clade 2.3.4.4b, as well as their different internal gene compositions. The evidence of enzootic HPAI virus circulation during the summer of 2021 indicates a possible paradigm shift in the epidemiology of HPAI in Europe.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Birds , Europe/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A virus/genetics , Influenza in Birds/epidemiology , Phylogeny , Poultry
13.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: mdl-35635446

ABSTRACT

Avian influenza viruses (AIVs) are classified as either low pathogenicity (LP; generally causing sub-clinical to mild infections) or high pathogenicity (HP; capable of causing significant mortality events in birds). To date, HPAIVs appear o be restricted to the haemagglutinin (HA) glycoprotein H5 and H7 AIV subtypes. Both LPAIV and HPAIV H5 and H7 AIV subtypes are classified as the causative agents of notifiable disease in poultry. A broad range of non-H5/non-H7 LPAIVs also exist that have been associated with more severe disease outcomes in avian species. As a result, the constant threat from AIVs causes significant economic damage in poultry production systems worldwide. The close proximity between mammalian and susceptible avian species in some environments provides the opportunity for both inter-host transmission and mammalian adaptation, potentially resulting in novel AIV strains capable of infecting humans.


Subject(s)
Influenza A virus , Influenza in Birds , Poultry Diseases , Animals , Birds , Humans , Influenza A virus/genetics , Mammals , Poultry
14.
Viruses ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35215806

ABSTRACT

The UK and Europe have seen successive outbreaks of highly pathogenic avian influenza across the 2020/21 and 2021/22 autumn/winter seasons. Understanding both the epidemiology and transmission of these viruses in different species is critical to aid mitigating measures where outbreaks cause extensive mortalities in both land- and waterfowl. Infection of different species can result in mild or asymptomatic outcomes, or acute infections that result in high morbidity and mortality levels. Definition of disease outcome in different species is of great importance to understanding the role different species play in the maintenance and transmission of these pathogens. Further, the infection of species that have conservation value is also important to recognise and characterise to understand the impact on what might be limited wild populations. Highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b has been detected in great skuas (Stercorarius skua) across different colonies on islands off the shore of Scotland, Great Britain during summer 2021. A large number of great skuas were observed as developing severe clinical disease and dying during the epizootic and mortalities were estimated to be high where monitored. Of eight skuas submitted for post-mortem examination, seven were confirmed as being infected with this virus using a range of diagnostic assays. Here we overview the outbreak event that occurred in this species, listed as species of conservation concern in Great Britain and outline the importance of this finding with respect to virus transmission and maintenance.


Subject(s)
Charadriiformes/virology , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/virology , Animals , Animals, Wild/virology , Disease Outbreaks , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Influenza in Birds/transmission , Scotland/epidemiology , Seasons , Virulence
15.
J Virol ; 96(2): e0137421, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34757846

ABSTRACT

Human-to-swine transmission of influenza A virus (IAV) repeatedly occurs, leading to sustained transmission and increased diversity in swine; human seasonal H3N2 introductions occurred in the 1990s and 2010s and were maintained in North American swine. Swine H3N2 strains were subsequently associated with zoonotic infections, highlighting the need to understand the risk of endemic swine IAV to humans. We quantified antigenic distances between swine H3N2 and human seasonal vaccine strains from 1973 to 2014 using a panel of monovalent antisera raised in pigs in hemagglutination inhibition (HI) assays. Swine H3N2 lineages retained the closest antigenic similarity to human vaccine strains from the decade of incursion. Swine lineages from the 1990s were antigenically more similar to human vaccine strains of the mid-1990s but had substantial distance from recent human vaccine strains. In contrast, lineages from the 2010s were closer to human vaccine strains from 2011 and 2014 and the most antigenically distant from human vaccine strains prior to 2007. HI assays using ferret antisera demonstrated that swine lineages from the 1990s and 2010s had significant fold reductions compared to the homologous HI titer of the nearest pandemic preparedness candidate vaccine virus (CVV) or seasonal vaccine strain. The assessment of postinfection and postvaccination human serum cohorts demonstrated limited cross-reactivity to swine H3N2 from the 1990s, especially in older adults born before the 1970s. We identified swine strains to which humans are likely to lack population immunity or are not protected against by a current human seasonal vaccine or CVV to use in prioritizing future human CVV strain selection. IMPORTANCE Human H3N2 influenza A viruses spread to pigs in North America in the 1990s and more recently in the 2010s. These cross-species events led to sustained circulation and increased H3N2 diversity in pig populations. The evolution of H3N2 in swine led to a reduced similarity to human seasonal H3N2 and the vaccine strains used to protect human populations. We quantified the antigenic phenotypes and found that North American swine H3N2 lineages retained more antigenic similarity to historical human vaccine strains from the decade of incursion but had substantial differences compared to recent human vaccine strains. Additionally, pandemic preparedness vaccine strains demonstrated a loss of similarity to contemporary swine strains. Finally, human sera revealed that although these adults had antibodies against human H3N2 strains, many had limited immunity to swine H3N2, especially older adults born before 1970. Antigenic assessment of swine H3N2 provides critical information for pandemic preparedness and candidate vaccine development.


Subject(s)
Influenza A Virus, H3N2 Subtype/genetics , Orthomyxoviridae Infections/virology , Viral Zoonoses/virology , Animals , Antigenic Drift and Shift , Antigenic Variation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immune Sera/immunology , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/genetics , Influenza, Human/transmission , Influenza, Human/virology , Orthomyxoviridae Infections/transmission , Phylogeny , Risk Assessment , Swine , Viral Zoonoses/transmission
16.
Vector Borne Zoonotic Dis ; 21(12): 979-988, 2021 12.
Article in English | MEDLINE | ID: mdl-34958264

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIV) can be carried long distances by migratory wild birds and by poultry trade. Highly pathogenic avian influenza (HPAI) is often lethal in domestic poultry and can sporadically infect and cause severe respiratory or systemic disease in other species including humans. Since 2003, the H5 subtype of HPAIV have spread from epicenters in China to neighboring regions in East and Southeast Asia, and across Central Asia to the Indian subcontinent, Europe, Africa, and North America. Outbreaks of H5N1 HPAIV struck poultry in Ukraine in 2005. In 2016, A H5N8 clade 2.3.4.4b HPAIV outbreaks occurred in wild and domestic birds in Ukraine concurrently with outbreaks in Central Europe, Russia, and the Middle East. We report outbreaks of HPAI in domestic backyard poultry in (2016-2017) in the southern region of Ukraine, in proximity to mass gathering sites for migratory waterfowl including mute swans (Cygnus olor). All eight genome segments of three novel H5N8 HPAIV isolated in November 2016 from two domestic backyard chickens (Gallus gallus) and one backyard mallard duck (Anas platyrhynchos) found dead of HPAI in Azov-Black Sea region of Ukraine were cladistically related to H5N8 2.3.4.4b HPAI viruses isolated from wild shelduck (Tadorna tadorna) and white-fronted goose (Anser albifrons) in Askania Nova Biopreserve (Kherson district, Ukraine) in 2016-2017 and to other contemporary H5N8 HPAIV strains sequenced from wild birds and poultry in Eurasia. Amino acid variations in hemagglutinin were outside of the polybasic cleavage site (PLREKRRKR/GLF), and D224G suggested avian-like receptor binding specificity; neuraminidase did not have mutations characteristic of oseltamivir drug resistance. Outbreaks of HPAI in Ukraine highlight the continual need for biosurveillance and genomic sequencing of avian influenza viruses along wild bird flyways and interfaces with domestic poultry in Eurasia.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Animals, Wild , Chickens , Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/epidemiology , Mass Gatherings , Phylogeny , Ukraine/epidemiology
17.
Emerg Microbes Infect ; 10(1): 2223-2234, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34753400

ABSTRACT

Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating high levels of virus circulation in chicken farms despite the low number of reported outbreaks. Co-circulation of both subtypes was common in farms, with our findings suggest that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.


Subject(s)
Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Bangladesh/epidemiology , Chickens , Cross-Sectional Studies , Disease Outbreaks , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/epidemiology , Molecular Epidemiology , Phylogeny , Poultry Diseases/epidemiology , Protein Conformation
18.
Emerg Infect Dis ; 27(11): 2856-2863, 2021 11.
Article in English | MEDLINE | ID: mdl-34670647

ABSTRACT

We report a disease and mortality event involving swans, seals, and a fox at a wildlife rehabilitation center in the United Kingdom during late 2020. Five swans had onset of highly pathogenic avian influenza virus infection while in captivity. Subsequently, 5 seals and a fox died (or were euthanized) after onset of clinical disease. Avian-origin influenza A virus subtype H5N8 was retrospectively determined as the cause of disease. Infection in the seals manifested as seizures, and immunohistochemical and molecular testing on postmortem samples detected a neurologic distribution of viral products. The fox died overnight after sudden onset of inappetence, and postmortem tissues revealed neurologic and respiratory distribution of viral products. Live virus was isolated from the swans, seals, and the fox, and a single genetic change was detected as a potential adaptive mutation in the mammalian-derived viral sequences. No human influenza-like illness was reported in the weeks after the event.


Subject(s)
Encephalitis , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Seals, Earless , Animals , Rehabilitation Centers , Retrospective Studies
19.
Viruses ; 13(10)2021 10 16.
Article in English | MEDLINE | ID: mdl-34696516

ABSTRACT

The first detection of a Highly Pathogenic Avian Influenza (HPAI) H5N8 virus in Bulgaria dates back to December 2016. Since then, many outbreaks caused by HPAI H5 viruses from clade 2.3.4.4B have been reported in both domestic and wild birds in different regions of the country. In this study, we characterized the complete genome of sixteen H5 viruses collected in Bulgaria between 2019 and 2021. Phylogenetic analyses revealed a persistent circulation of the H5N8 strain for four consecutive years (December 2016-June 2020) and the emergence in 2020 of a novel reassortant H5N2 subtype, likely in a duck farm. Estimation of the time to the most recent common ancestor indicates that this reassortment event may have occurred between May 2019 and January 2020. At the beginning of 2021, Bulgaria experienced a new virus introduction in the poultry sector, namely a HPAI H5N8 that had been circulating in Europe since October 2020. The periodical identification in domestic birds of H5 viruses related to the 2016 epidemic as well as a reassortant strain might indicate undetected circulation of the virus in resident wild birds or in the poultry sector. To avoid the concealed circulation and evolution of viruses, and the risk of emergence of strains with pandemic potential, the implementation of control measures is of utmost importance, particularly in duck farms where birds display no clinical signs.


Subject(s)
Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Animals , Animals, Wild/virology , Birds/virology , Bulgaria/epidemiology , Disease Outbreaks/veterinary , Ducks/virology , History, 21st Century , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A virus/pathogenicity , Influenza in Birds/history , Phylogeny , Poultry/virology , Poultry Diseases/virology
20.
Vaccine ; 39(29): 3794-3798, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34074548

ABSTRACT

Since 2003, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been maintained in poultry, periodically spilling back into wild migratory birds and spread to other geographic regions, with re-introduction to domestic birds causing severe impacts for poultry health, production and food sustainability. Successive waves of infection have also resulted in substantial genetic evolution and reassortment, enabling the emergence of multiple clades and subtypes within the H5 2.3.4.4 HPAI viruses. Control of AI is principally through either culling or through vaccination using conventional vaccines. Here, we antigenically and genetically characterise the emerging 2020/21 H5NX clade 2.3.4.4 strains and assess cross-reactivity to putative vaccine strains using chicken antisera. We demonstrate significant antigenic differences between commercially available poultry vaccines and currently circulating viruses suggesting that vaccination options might be suboptimal in the current outbreaks.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Influenza A virus/genetics , Influenza in Birds/prevention & control , Poultry
SELECTION OF CITATIONS
SEARCH DETAIL
...