Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Database (Oxford) ; 20212021 10 26.
Article in English | MEDLINE | ID: mdl-34697637

ABSTRACT

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology's compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/.


Subject(s)
Biological Ontologies , Databases, Factual , Metadata
2.
Nucleic Acids Res ; 48(D1): D704-D715, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31701156

ABSTRACT

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.


Subject(s)
Computational Biology/methods , Genotype , Phenotype , Algorithms , Animals , Biological Ontologies , Databases, Genetic , Exome , Genetic Association Studies , Genetic Variation , Genomics , Humans , Internet , Software , Translational Research, Biomedical , User-Computer Interface
4.
PLoS Comput Biol ; 15(2): e1006790, 2019 02.
Article in English | MEDLINE | ID: mdl-30726205

ABSTRACT

Genome annotation is the process of identifying the location and function of a genome's encoded features. Improving the biological accuracy of annotation is a complex and iterative process requiring researchers to review and incorporate multiple sources of information such as transcriptome alignments, predictive models based on sequence profiles, and comparisons to features found in related organisms. Because rapidly decreasing costs are enabling an ever-growing number of scientists to incorporate sequencing as a routine laboratory technique, there is widespread demand for tools that can assist in the deliberative analytical review of genomic information. To this end, we present Apollo, an open source software package that enables researchers to efficiently inspect and refine the precise structure and role of genomic features in a graphical browser-based platform. Some of Apollo's newer user interface features include support for real-time collaboration, allowing distributed users to simultaneously edit the same encoded features while also instantly seeing the updates made by other researchers on the same region in a manner similar to Google Docs. Its technical architecture enables Apollo to be integrated into multiple existing genomic analysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the implications that Apollo and related applications may have on how the results of genome research are published and made accessible.


Subject(s)
Computational Biology/methods , Molecular Sequence Annotation/methods , Chromosome Mapping/methods , Database Management Systems , Genome/genetics , Genomics , Information Storage and Retrieval , Internet , Software , User-Computer Interface
5.
Lab Anim (NY) ; 47(10): 277-289, 2018 10.
Article in English | MEDLINE | ID: mdl-30224793

ABSTRACT

Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.


Subject(s)
Animals, Laboratory , Databases as Topic , Translational Research, Biomedical/methods , Animals , Models, Animal
6.
F1000Res ; 6: 1618, 2017.
Article in English | MEDLINE | ID: mdl-30109017

ABSTRACT

Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices.

7.
Nucleic Acids Res ; 45(D1): D712-D722, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899636

ABSTRACT

The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.


Subject(s)
Databases, Genetic , Genetic Association Studies/methods , Genotype , Phenotype , Animals , Biological Evolution , Computational Biology/methods , Data Curation , Humans , Search Engine , Software , Species Specificity , User-Computer Interface , Web Browser
8.
Methods Mol Biol ; 1446: 291-302, 2017.
Article in English | MEDLINE | ID: mdl-27812951

ABSTRACT

The overarching goal of the Gene Ontology (GO) Consortium is to provide researchers in biology and biomedicine with all current functional information concerning genes and the cellular context under which these occur. When the GO was started in the 1990s surprisingly little attention had been given to how functional information about genes was to be uniformly captured, structured in a computable form, and made accessible to biologists. Because knowledge of gene, protein, ncRNA, and molecular complex roles is continuously accumulating and changing, the GO needed to be a dynamic resource, accurately tracking ongoing research results over time. Here I describe the progress that has been made over the years towards this goal, and the work that still remains to be done, to make of the Gene Ontology (GO) Consortium realize its goal of offering the most comprehensive and up-to-date resource for information on gene function.


Subject(s)
Gene Ontology , Genomics/methods , Animals , Databases, Genetic , Humans , Molecular Sequence Annotation/methods , Phylogeny , Proteins/genetics
9.
Article in English | MEDLINE | ID: mdl-28025345

ABSTRACT

We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Evolution, Molecular , Gene Ontology , Models, Genetic , Molecular Sequence Annotation/methods , Phylogeny , Software , Animals , Humans
10.
J Biomed Semantics ; 7(1): 57, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27664130

ABSTRACT

BACKGROUND: The Environment Ontology (ENVO; http://www.environmentontology.org/ ), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications. METHODS: We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO. RESULTS: Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl . CONCLUSIONS: ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, 'omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO's growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.

11.
Am J Hum Genet ; 99(3): 595-606, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27569544

ABSTRACT

The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease.


Subject(s)
Algorithms , Genetic Diseases, Inborn/genetics , Genome, Human/genetics , Mutation/genetics , Gene Frequency , Genome-Wide Association Study , Humans , Machine Learning , Open Reading Frames/genetics , Phenotype , Point Mutation/genetics
12.
Genetics ; 203(4): 1491-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27516611

ABSTRACT

The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org) provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.


Subject(s)
Computational Biology , Genetic Association Studies , Genomics , Precision Medicine , Databases, Genetic , Humans , Sequence Analysis, DNA , Sequence Analysis, Protein
13.
Bioinformatics ; 32(22): 3501-3503, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27412096

ABSTRACT

The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. AVAILABILITY AND IMPLEMENTATION: The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/Supplementary information: Supplementary data are available at Bioinformatics online. CONTACT: msa@bio.sh.


Subject(s)
Sequence Alignment , Software , Programming Languages , Web Browser
14.
Nat Methods ; 13(5): 425-30, 2016 05.
Article in English | MEDLINE | ID: mdl-27043882

ABSTRACT

Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods.


Subject(s)
Computational Biology/standards , Genomics/standards , Phylogeny , Proteomics/standards , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Computational Biology/methods , Databases, Genetic , Eukaryota/classification , Eukaryota/genetics , Gene Ontology , Genomics/methods , Models, Genetic , Proteomics/methods , Sequence Analysis, Protein , Sequence Homology , Species Specificity
15.
Genome Biol ; 17: 66, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27072794

ABSTRACT

BACKGROUND: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. RESULTS: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. CONCLUSIONS: JBrowse is a mature web application suitable for genome visualization and analysis.


Subject(s)
Genomics/methods , Databases, Genetic , Genome , User-Computer Interface , Web Browser
16.
PeerJ ; 3: e1470, 2015.
Article in English | MEDLINE | ID: mdl-26713234

ABSTRACT

Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

17.
Hum Mutat ; 36(10): 979-84, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269093

ABSTRACT

The Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative. The model data can provide additional evidence to aid diagnosis, suggest relevant models for disease mechanism and treatment exploration, and identify collaborators across the translational divide. The Monarch Initiative provides an implementation of this API for searching multiple integrated sources of data that contextualize the knowledge about any given patient or patient family into the greater biomedical knowledge landscape. While this corpus of data can aid diagnosis, it is also the beginning of research to improve understanding of rare human diseases.


Subject(s)
Databases, Genetic , Disease/genetics , Genetic Predisposition to Disease/genetics , Animals , Disease Models, Animal , Genetic Variation , Humans , Information Dissemination , Phenotype , User-Computer Interface
18.
Genome Biol Evol ; 7(7): 1988-99, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26133389

ABSTRACT

Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.


Subject(s)
Phylogeny , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Eukaryota/classification , Eukaryota/genetics , Genes
19.
Am J Hum Genet ; 97(1): 111-24, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26119816

ABSTRACT

The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.


Subject(s)
Gene Ontology/trends , Genetic Diseases, Inborn/classification , Genetic Diseases, Inborn/genetics , Phenotype , Terminology as Topic , Genetic Diseases, Inborn/pathology , Humans , MEDLINE , Models, Biological
20.
Mamm Genome ; 26(9-10): 548-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26092691

ABSTRACT

New sequencing technologies have ushered in a new era for diagnosis and discovery of new causative mutations for rare diseases. However, the sheer numbers of candidate variants that require interpretation in an exome or genomic analysis are still a challenging prospect. A powerful approach is the comparison of the patient's set of phenotypes (phenotypic profile) to known phenotypic profiles caused by mutations in orthologous genes associated with these variants. The most abundant source of relevant data for this task is available through the efforts of the Mouse Genome Informatics group and the International Mouse Phenotyping Consortium. In this review, we highlight the challenges in comparing human clinical phenotypes with mouse phenotypes and some of the solutions that have been developed by members of the Monarch Initiative. These tools allow the identification of mouse models for known disease-gene associations that may otherwise have been overlooked as well as candidate genes may be prioritized for novel associations. The culmination of these efforts is the Exomiser software package that allows clinical researchers to analyse patient exomes in the context of variant frequency and predicted pathogenicity as well the phenotypic similarity of the patient to any given candidate orthologous gene.


Subject(s)
Databases, Genetic , Genetic Diseases, Inborn , Animals , Computational Biology , Disease Models, Animal , Exome/genetics , Genomics , Humans , Mice , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...