Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
PLoS One ; 19(5): e0301070, 2024.
Article in English | MEDLINE | ID: mdl-38771784

ABSTRACT

OBJECTIVE: To describe the implementation of a test-negative design case-control study in California during the Coronavirus Disease 2019 (COVID-19) pandemic. STUDY DESIGN: Test-negative case-control study. METHODS: Between February 24, 2021 - February 24, 2022, a team of 34 interviewers called 38,470 Californians, enrolling 1,885 that tested positive for SARS-CoV-2 (cases) and 1,871 testing negative for SARS-CoV-2 (controls) for 20-minute telephone survey. We estimated adjusted odds ratios for answering the phone and consenting to participate using mixed effects logistic regression. We used a web-based anonymous survey to compile interviewer experiences. RESULTS: Cases had 1.29-fold (95% CI: 1.24-1.35) higher adjusted odds of answering the phone and 1.69-fold (1.56-1.83) higher adjusted odds of consenting to participate compared to controls. Calls placed from 4pm to 6pm had the highest adjusted odds of being answered. Some interviewers experienced mental wellness challenges interacting with participants with physical (e.g., food, shelter, etc.) and emotional (e.g., grief counseling) needs, and enduring verbal harassment from individuals called. CONCLUSIONS: Calls placed during afternoon hours may optimize response rate when enrolling controls to a case-control study during a public health emergency response. Proactive check-ins and continual collection of interviewer experience(s) and may help maintain mental wellbeing of investigation workforce. Remaining adaptive to the dynamic needs of the investigation team is critical to a successful study, especially in emergent public health crises, like that represented by the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Telephone , Humans , COVID-19/epidemiology , COVID-19/psychology , Case-Control Studies , California/epidemiology , Male , Female , Adult , SARS-CoV-2/isolation & purification , Middle Aged , Surveys and Questionnaires , Pandemics , Adolescent , Aged , Young Adult , COVID-19 Testing/methods
2.
medRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699313

ABSTRACT

The SARS-CoV-2 BA.2.86 lineage, and its sublineage JN.1 in particular, achieved widespread transmission in the US during winter 2023-24. However, the increase in infections was not accompanied by increases in COVID-19 hospitalizations and mortality commensurate with prior waves. To understand shifts in COVID-19 epidemiology associated with JN.1 emergence, we compared characteristics and clinical outcomes of time-matched cases infected with BA.2.86- derived lineages (predominantly representing JN.1) versus co-circulating XBB-derived lineages in December, 2023 and January, 2024. Cases infected with BA.2.86-derived lineages received greater numbers of COVID-19 vaccine doses, including XBB.1.5-targeted and BA.4/BA.5-targeted boosters, in comparison to cases infected with XBB-derived lineages. Additionally, cases infected with BA.2.86-derived lineages experienced greater numbers of documented prior SARS-CoV-2 infections. These associations of BA.2.86-derived lineages with immune escape were confirmed when comparing cases diagnosed during periods when JN.1 was the predominant circulating lineage to cases diagnosed during November, 2023. Cases infected with BA.2.86-derived lineages, or during periods when JN.1 was the predominant circulating lineage, also experienced lower risk of progression to severe clinical outcomes requiring emergency department consultations or hospital admission. Sensitivity analyses suggested under-ascertainment of prior infections, even if differential between cases infected with BA.2.86-derived lineages and non-BA.2.86 lineages, could not explain this apparent attenuation of severity. Our findings implicate escape from immunity acquired from prior vaccination or infection in the emergence of the JN.1 lineage and suggest infections with this lineage are less likely to experience clinically-severe disease. Monitoring of immune escape and clinical severity in emerging SARS-CoV-2 variants remains a priority to inform responses.

3.
JAMA Netw Open ; 7(4): e247822, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652476

ABSTRACT

Importance: A SARS-CoV-2 vaccine was approved for adolescents aged 12 to 15 years on May 10, 2021, with approval for younger age groups following thereafter. The population level impact of the pediatric COVID-19 vaccination program has not yet been established. Objective: To identify whether California's pediatric COVID-19 immunization program was associated with changes in pediatric COVID-19 incidence and hospitalizations. Design, Setting, and Participants: A case series on COVID-19 vaccination including children aged 6 months to 15 years was conducted in California. Data were obtained on COVID-19 cases in California between April 1, 2020, and February 27, 2023. Exposure: Postvaccination evaluation periods spanned 141 days (June 10 to October 29, 2021) for adolescents aged 12 to 15 years, 199 days (November 29, 2021, to June 17, 2022) for children aged 5 to 11 years, and 225 days (July 17, 2022, to February 27, 2023) for those aged 6 to 59 months. During these periods, statewide vaccine coverage reached 53.5% among adolescents aged 12 to 15 years, 34.8% among children aged 5 to 11 years, and 7.9% among those aged 6 to 59 months. Main Outcomes and Measures: Age-stepped implementation of COVID-19 vaccination was used to compare observed county-level incidence and hospitalization rates during periods when each age group became vaccine eligible to counterfactual rates predicted from observations among other age groups. COVID-19 case and hospitalization data were obtained from the California reportable disease surveillance system. Results: Between April 1, 2020, and February 27, 2023, a total of 3 913 063 pediatric COVID-19 cases and 12 740 hospitalizations were reported in California. Reductions of 146 210 cases (95% prediction interval [PI], 136 056-158 948) were estimated among adolescents aged 12 to 15 years, corresponding to a 37.1% (35.5%-39.1%) reduction from counterfactual predictions. Reductions of 230 134 (200 170-265 149) cases were estimated among children aged 5 to 11 years, corresponding to a 23.7% (20.6%-27.3%) reduction from counterfactual predictions. No evidence of reductions in COVID-19 cases statewide were found among children aged 6 to 59 months (estimated averted cases, -259; 95% PI, -1938 to 1019), although low transmission during the evaluation period may have limited the ability to do so. An estimated 168 hospitalizations (95% PI, 42-324) were averted among children aged 6 to 59 months, corresponding to a 24.4% (95% PI, 6.1%-47.1%) reduction. In meta-analyses, county-level vaccination coverage was associated with averted cases for all age groups. Despite low vaccination coverage, pediatric COVID-19 immunization in California averted 376 085 (95% PI, 348 355-417 328) reported cases and 273 (95% PI, 77-605) hospitalizations among children aged 6 months to 15 years over approximately 4 to 7 months following vaccination availability. Conclusions and Relevance: The findings of this case series analysis of 3 913 063 cases suggest reduced pediatric SARS-CoV-2 transmission following immunization. These results support the use of COVID-19 vaccines to reduce COVID-19 incidence and hospitalization in pediatric populations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hospitalization , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/epidemiology , Child , Adolescent , Hospitalization/statistics & numerical data , Incidence , Child, Preschool , California/epidemiology , COVID-19 Vaccines/therapeutic use , Infant , Female , Male , Vaccination/statistics & numerical data , Immunization Programs
4.
J Infect Dis ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498565

ABSTRACT

BACKGROUND: In 2022-2023, 15- and 20-valent pneumococcal conjugate vaccines (PCV15/PCV20) were recommended for infants. We aimed to estimate the incidence of outpatient visits and antibiotic prescriptions in U.S. children (≤17 years) from 2016-2019 for acute otitis media, pneumonia, and sinusitis associated with PCV15- and PCV20-additional (non-PCV13) serotypes to quantify PCV15/20 potential impacts. METHODS: We estimated the incidence of PCV15/20-additional serotype-attributable visits and antibiotic prescriptions as the product of all-cause incidence rates, derived from national healthcare surveys and MarketScan databases, and PCV15/20-additional serotype-attributable fractions. We estimated serotype-specific attributable fractions using modified vaccine-probe approaches incorporating incidence changes post-PCV13 and ratios of PCV13 versus PCV15/20 serotype frequencies, estimated through meta-analyses. RESULTS: Per 1000 children annually, PCV15-additional serotypes accounted for an estimated 2.7 (95% confidence interval 1.8-3.9) visits and 2.4 (1.6-3.4) antibiotic prescriptions. PCV20-additional serotypes resulted in 15.0 (11.2-20.4) visits and 13.2 (9.9-18.0) antibiotic prescriptions annually per 1,000 children. PCV15/20-additional serotypes account for 0.4% (0.2-0.6%) and 2.1% (1.5-3.0%) of pediatric outpatient antibiotic use. CONCLUSIONS: Compared with PCV15-additional serotypes, PCV20-additional serotypes account for >5 times the burden of visits and antibiotic prescriptions. Higher-valency PCVs, especially PCV20, may contribute to preventing pediatric pneumococcal respiratory infections and antibiotic use.

5.
J Infect Dis ; 229(Supplement_2): S188-S196, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-37820738

ABSTRACT

BACKGROUND: Exposures associated with mpox infection remain imperfectly understood. METHODS: We conducted a case-control study enrolling participants who received molecular tests for mpox/orthopoxvirus in California from November 2022 through June 2023. We collected data on behaviors during a 21-day risk period before symptom onset or testing among mpox case patients and test-negative controls. RESULTS: Thirteen of 54 case patients (24.1%) and 5 of 117 controls (4.3%) reported sexual exposure to individuals they identified as potential mpox case patients ("index contacts"; odds ratio [OR], 7.7 [95% confidence interval (CI), 2.5-19.3] relative to individuals who did not report exposure to potential mpox case patients). Among these participants, 10 of 13 case patients (76.9%) and 2 of 5 controls (40.0%) reported that their index contacts were not experiencing symptoms visible to participants during sex (OR, 14.9 [95% CI, 3.6-101.8]). Only 3 of 54 case patients (5.6%) reported exposure to symptomatic index contacts. Case patients reported more anal/vaginal sex partners than did controls (adjusted OR, 2.2 [95% CI, 1.0-4.8] for 2-3 partners and 3.8 [1.7-8.8] for ≥4 partners). Male case patients with penile lesions more commonly reported insertive anal/vaginal sex than those without penile lesions (adjusted OR, 9.3 [95% CI, 1.6-54.8]). Case patients with anorectal lesions more commonly reported receptive anal sex than those without anorectal lesions (adjusted OR, 14.4 [95% CI, 1.0-207.3]). CONCLUSIONS: Sexual exposure to contacts known or suspected to have experienced mpox was associated with increased risk of infection, often when index contacts lacked apparent symptoms. Exposure to more sex partners, including those whom participants did not identify as index contacts, was associated with increased risk of infection in a site-specific manner. While participants' assessment of symptoms in partners may be imperfect, these findings suggest that individuals without visibly prominent mpox symptoms transmit infection.


Subject(s)
HIV Infections , Mpox (monkeypox) , Sexual and Gender Minorities , Female , Humans , Male , Case-Control Studies , Risk Factors , Sexual Behavior , California , Homosexuality, Male
6.
PLoS Med ; 20(11): e1004271, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37992134

ABSTRACT

BACKGROUND: Shigella is a leading cause of diarrhea and dysentery in children in low-resource settings, which is frequently treated with antibiotics. The primary goal of a Shigella vaccine would be to reduce mortality and morbidity associated with Shigella diarrhea. However, ancillary benefits could include reducing antibiotic use and antibiotic exposures for bystander pathogens carried at the time of treatment, specifically for fluoroquinolones and macrolides (F/M), which are the recommended drug classes to treat dysentery. The aim of the study was to quantify the reduction in Shigella attributable diarrhea, all diarrhea, and antibiotic use in the first 2 years of life that could be prevented by a Shigella vaccine. METHODS AND FINDINGS: We used data from the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) study, a birth cohort study that followed 1,715 children with twice weekly surveillance for enteric infections, illnesses, and antibiotic use for the first 2 years of life from November 2009 to February 2014 at 8 sites. We estimated the impact of 2 one-dose (6 or 9 months) and 3 two-dose (6 and 9 months, 9 and 12 months, and 12 and 15 months) Shigella vaccines on diarrheal episodes, overall antibiotic use, and F/M use. Further, we considered additional protection through indirect and boosting effects. We used Monte Carlo simulations to estimate the absolute and relative reductions in the incidence of diarrhea and antibiotic use comparing each vaccination scenario to no vaccination. We analyzed 9,392 diarrhea episodes and 15,697 antibiotic courses among 1,715 children in the MAL-ED birth cohort study. There were 273.8 diarrhea episodes, 30.6 shigellosis episodes, and 457.6 antibiotic courses per 100 child-years. A Shigella vaccine with a mean vaccine efficacy of 60% against severe disease given at 9 and 12 months prevented 10.6 (95% CI [9.5, 11.5]) Shigella diarrhea episodes of any severity per 100 child-years (relative 34.5% reduction), 3.0 (95% CI [2.5, 3.5]) F/M courses for Shigella treatment per 100 child-years (relative 35.8% reduction), and 5.6 (95% CI [5.0, 6.3]) antibiotic courses of any drug class for Shigella treatment per 100 child-years (relative 34.5% reduction). This translated to a relative 3.8% reduction in all diarrhea, a relative 2.8% reduction in all F/M courses, a relative 3.1% reduction in F/M exposures to bystander pathogens, and a relative 0.9% reduction in all antibiotic courses. These results reflect Shigella incidence and antibiotic use patterns at the 8 MAL-ED sites and may not be generalizable to all low-resource settings. CONCLUSIONS: Our simulation results suggest that a Shigella vaccine meeting WHO targets for efficacy could prevent about a third of Shigella diarrhea episodes, antibiotic use to treat shigellosis, and bystander exposures due to shigellosis treatment. However, the reductions in overall diarrhea episodes and antibiotic use are expected to be modest (<5%).


Subject(s)
Dysentery, Bacillary , Dysentery , Shigella , Vaccines , Humans , Infant , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/prevention & control , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Diarrhea/epidemiology , Diarrhea/prevention & control , Dysentery/epidemiology , Dysentery/prevention & control , Dysentery/complications , Vaccines/therapeutic use
7.
Pneumonia (Nathan) ; 15(1): 15, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37794443

ABSTRACT

BACKGROUND: Respiratory pathogens, including SARS-CoV-2, can cause pulmonary structural damage and physiologic impairment, which may increase the risk of subsequent lower respiratory tract infections (LRTI). Prior hospitalization for any reason is a risk factor for LRTI, but data on the risk of subsequent new-onset LRTI following hospitalization for COVID-19 LRTI or non-COVID-19 LRTI are needed to inform strategies for immunizations targeting respiratory pathogens. METHODS: We conducted a retrospective cohort study at Kaiser Permanente Southern California (KPSC) among adults hospitalized from 3/1/2020 to 5/31/2022, excluding labor and delivery. We categorized individuals into 3 mutually exclusive baseline exposure groups: those hospitalized for COVID-19 LRTI, those hospitalized for non-COVID-19 LRTI, and those hospitalized for all other causes without LRTI or COVID-19 ("non-LRTI"). Following hospital discharge, patients were followed up for new-onset LRTI, beginning 30 antibiotic-free days after hospital discharge until 8/31/2022. We used multivariable cause-specific Cox regression with time-varying covariates to estimate hazard ratios (HR) of new-onset LRTI comparing those hospitalized for COVID-19 LRTI or non-COVID-19 LRTI to those hospitalized for non-LRTI, adjusting for demographic and clinical characteristics. RESULTS: The study included 22,417 individuals hospitalized for COVID-19 LRTI, 12,795 individuals hospitalized for non-COVID-19 LRTI, and 176,788 individuals hospitalized for non-LRTI. Individuals hospitalized for non-COVID-19 LRTI were older and had more comorbidities than those hospitalized for COVID-19 LRTI or non-LRTI. Incidence rates per 1,000 person-years (95% CI) of new-onset LRTI were 52.5 (51.4-53.6) among individuals hospitalized for COVID-19 LRTI, 253.5 (243.7-263.6) among those hospitalized for non-COVID-19 LRTI, and 52.5 (51.4-53.6) among those hospitalized for non-LRTI. The adjusted hazard of new-onset LRTI during follow-up was 20% higher among individuals hospitalized for COVID-19 LRTI (HR 1.20 [95% CI: 1.12-1.28]) and 301% higher among individuals hospitalized for non-COVID-19 LRTI (HR 3.01 [95% CI: 2.87-3.15]) compared to those hospitalized for non-LRTI. CONCLUSION: The risk of new-onset LRTI following hospital discharge was high, particularly among those hospitalized for non-COVID-19 LRTI, but also for COVID-19 LRTI. These data suggest that immunizations targeting respiratory pathogens, including COVID-19, should be considered for adults hospitalized for LRTI prior to hospital discharge.

8.
medRxiv ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37662372

ABSTRACT

Importance: Streptococcus pneumoniae is a known etiology of acute respiratory infections (ARIs), which account for large proportions of outpatient visits and antibiotic use in children. In 2023, 15- and 20-valent pneumococcal conjugate vaccines (PCV15, PCV20) were recommended for routine use in infants. However, the burden of outpatient healthcare utilization among U.S. children attributable to the additional, non-PCV13 serotypes in PCV15/20 is unknown. Objective: To estimate the incidence of outpatient visits and antibiotic prescriptions in U.S. children for acute otitis media, pneumonia, and sinusitis associated with PCV15- and PCV20-additional serotypes (non-PCV13 serotypes) to quantify potential impacts of PCV15/20 on outpatient visits and antibiotic prescriptions for these conditions. Design: Multi-component study including descriptive analyses of cross-sectional and cohort data on outpatient visits and antibiotic prescriptions from 2016-2019 and meta-analyses of pneumococcal serotype distribution in non-invasive respiratory infections. Setting: Outpatient visits and antibiotic prescriptions among U.S. children. Participants: Pediatric visits and antibiotic prescriptions among children captured in the National Ambulatory Medical Care Survey (NAMCS), the National Hospital Ambulatory Medicare Care Survey (NHAMCS), and Merative MarketScan, collectively representing healthcare delivery across all outpatient settings. Incidence denominators estimated using census (NAMCS/NHAMCS) and enrollment (MarketScan) data. Main outcomes and measures: Pediatric outpatient visit and antibiotic prescription incidence for acute otitis media, pneumonia, and sinusitis associated with PCV15/20-additional serotypes. Results: We estimated that per 1000 children annually, PCV15-additional serotypes accounted for 2.7 (95% confidence interval 1.8-3.9) visits and 2.4 (1.6-3.4) antibiotic prescriptions. PCV20-additional serotypes resulted in 15.0 (11.2-20.4) visits and 13.2 (9.9-18.0) antibiotic prescriptions annually per 1,000 children. Projected to national counts, PCV15/20-additional serotypes account for 173,000 (118,000-252,000) and 968,000 (722,000-1,318,000) antibiotic prescriptions among U.S. children each year, translating to 0.4% (0.2-0.6%) and 2.1% (1.5-3.0%) of all outpatient antibiotic use among children. Conclusions and relevance: PCV15/20-additional serotypes account for a large burden of pediatric outpatient healthcare utilization. Compared with PCV15-additional serotypes, PCV20-additional serotypes account for >5 times the burden of visits and antibiotic prescriptions. These higher-valency PCVs, especially PCV20, may contribute to preventing ARIs and antibiotic use in children.

9.
Clin Infect Dis ; 77(9): 1340-1352, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37293708

ABSTRACT

BACKGROUND: Updated recommendations of the US Advisory Committee on Immunization Practices indicate that all adults aged ≥65 years and adults aged <65 years with comorbid conditions should receive 15- and 20-valent pneumococcal conjugate vaccines (PCV15/20). We aimed to assess the potential impact of these recommendations on the burden of lower respiratory tract infections (LRTIs) among adults. METHODS: We estimated the incidence of LRTI cases and associated hospital admissions among enrollees of Kaiser Permanente Southern California from 2016 through 2019. We used a counterfactual inference framework to estimate excess LRTI-associated risk of death up to 180 days after diagnosis. We used prior estimates of PCV13 effectiveness against LRTI to model potential direct effects of PCV15/20 by age group and risk status. RESULTS: Use of PCV15 and PCV20, respectively, could prevent 89.3 (95% confidence interval, 41.3-131.8) and 108.6 (50.4-159.1) medically attended LRTI cases; 21.9 (10.1-32.0) and 26.6 (12.4-38.7) hospitalized LRTI cases; and 7.1 (3.3-10.5) and 8.7 (4.0-12.7) excess LRTI-associated deaths, each per 10 000 person-years. Among at-risk adults aged <65 years, use of PCV15 and PCV20 could prevent 85.7 (39.6-131.5) and 102.7 (47.8-156.7) medically attended LRTI cases per 10 000 person-years; 5.1 (2.4-8.6) and 6.2 (2.8-10.2) LRTI hospitalizations per 10 000 person-years, and 0.9 (0.4-1.4) and 1.1 (0.5-1.7) excess LRTI-associated deaths per 10 000 person-years. CONCLUSIONS: Our findings suggest recent recommendations, including PCV15/20 within adult pneumococcal vaccine series, may substantially reduce LRTI burden.


Subject(s)
Pneumococcal Infections , Respiratory Tract Infections , Humans , Adult , United States/epidemiology , Adolescent , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Streptococcus pneumoniae , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Immunization , Pneumococcal Vaccines , Vaccines, Conjugate
10.
Nat Commun ; 14(1): 3563, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322091

ABSTRACT

Globally, excess deaths during 2020-21 outnumbered documented COVID-19 deaths by 9.5 million, primarily driven by deaths in low- and middle-income countries (LMICs) with limited vital surveillance. Here we unravel the contributions of probable COVID-19 deaths from other changes in mortality related to pandemic control measures using medically-certified death registrations from Madurai, India-an urban center with well-functioning vital surveillance. Between March, 2020 and July, 2021, all-cause deaths in Madurai exceeded expected levels by 30% (95% confidence interval: 27-33%). Although driven by deaths attributed to cardiovascular or cerebrovascular conditions, diabetes, senility, and other uncategorized causes, increases in these attributions were restricted to medically-unsupervised deaths, and aligned with surges in confirmed or attributed COVID-19 mortality, likely reflecting mortality among unconfirmed COVID-19 cases. Implementation of lockdown measures was associated with a 7% (0-13%) reduction in all-cause mortality, driven by reductions in deaths attributed to injuries, infectious diseases and maternal conditions, and cirrhosis and other liver conditions, respectively, but offset by a doubling in cancer deaths. Our findings help to account for gaps between documented COVID-19 mortality and excess all-cause mortality during the pandemic in an LMIC setting.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Cause of Death , India/epidemiology , Communicable Disease Control , Mortality
11.
Nat Commun ; 14(1): 3854, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386005

ABSTRACT

Host immune responses are a key source of selective pressure driving pathogen evolution. Emergence of many SARS-CoV-2 lineages has been associated with enhancements in their ability to evade population immunity resulting from both vaccination and infection. Here we show diverging trends of escape from vaccine-derived and infection-derived immunity for the emerging XBB/XBB.1.5 Omicron lineage. Among 31,739 patients tested in ambulatory settings in Southern California from December, 2022 to February, 2023, adjusted odds of prior receipt of 2, 3, 4, and ≥5 COVID-19 vaccine doses were 10% (95% confidence interval: 1-18%), 11% (3-19%), 13% (3-21%), and 25% (15-34%) lower, respectively, among cases infected with XBB/XBB.1.5 than among cases infected with other co-circulating lineages. Similarly, prior vaccination was associated with greater point estimates of protection against progression to hospitalization among cases with XBB/XBB.1.5 than among non-XBB/XBB.1.5 cases (70% [30-87%] and 48% [7-71%], respectively, for recipients of ≥4 doses). In contrast, cases infected with XBB/XBB.1.5 had 17% (11-24%) and 40% (19-65%) higher adjusted odds of having experienced 1 and ≥2 prior documented infections, respectively, including with pre-Omicron variants. As immunity acquired from SARS-CoV-2 infection becomes increasingly widespread, fitness costs associated with enhanced vaccine sensitivity in XBB/XBB.1.5 may be offset by increased ability to evade infection-derived host responses.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control
12.
PLoS Med ; 20(5): e1004239, 2023 May.
Article in English | MEDLINE | ID: mdl-37216371

ABSTRACT

BACKGROUND: Despite significant global progress in reducing neonatal mortality, bacterial sepsis remains a major cause of neonatal deaths. Klebsiella pneumoniae (K. pneumoniae) is the leading pathogen globally underlying cases of neonatal sepsis and is frequently resistant to antibiotic treatment regimens recommended by the World Health Organization (WHO), including first-line therapy with ampicillin and gentamicin, second-line therapy with amikacin and ceftazidime, and meropenem. Maternal vaccination to prevent neonatal infection could reduce the burden of K. pneumoniae neonatal sepsis in low- and middle-income countries (LMICs), but the potential impact of vaccination remains poorly quantified. We estimated the potential impact of such vaccination on cases and deaths of K. pneumoniae neonatal sepsis and project the global effects of routine immunization of pregnant women with the K. pneumoniae vaccine as antimicrobial resistance (AMR) increases. METHODS AND FINDINGS: We developed a Bayesian mixture-modeling framework to estimate the effects of a hypothetical K. pneumoniae maternal vaccine with 70% efficacy administered with coverage equivalent to that of the maternal tetanus vaccine on neonatal sepsis infections and mortality. To parameterize our model, we used data from 3 global studies of neonatal sepsis and/or mortality-with 2,330 neonates who died with sepsis surveilled from 2016 to 2020 undertaken in 18 mainly LMICs across all WHO regions (Ethiopia, Kenya, Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, Uganda, Brazil, Italy, Greece, Pakistan, Bangladesh, India, Thailand, China, and Vietnam). Within these studies, 26.95% of fatal neonatal sepsis cases were culture-positive for K. pneumoniae. We analyzed 9,070 K. pneumoniae genomes from human isolates gathered globally from 2001 to 2020 to quantify the temporal rate of acquisition of AMR genes in K. pneumoniae isolates to predict the future number of drug-resistant cases and deaths that could be averted by vaccination. Resistance rates to carbapenems are increasing most rapidly and 22.43% [95th percentile Bayesian credible interval (CrI): 5.24 to 41.42] of neonatal sepsis deaths are caused by meropenem-resistant K. pneumoniae. Globally, we estimate that maternal vaccination could avert 80,258 [CrI: 18,084 to 189,040] neonatal deaths and 399,015 [CrI: 334,523 to 485,442] neonatal sepsis cases yearly worldwide, accounting for more than 3.40% [CrI: 0.75 to 8.01] of all neonatal deaths. The largest relative benefits are in Africa (Sierra Leone, Mali, Niger) and South-East Asia (Bangladesh) where vaccination could avert over 6% of all neonatal deaths. Nevertheless, our modeling only considers country-level trends in K. pneumoniae neonatal sepsis deaths and is unable to consider within-country variability in bacterial prevalence that may impact the projected burden of sepsis. CONCLUSIONS: A K. pneumoniae maternal vaccine could have widespread, sustained global benefits as AMR in K. pneumoniae continues to increase.


Subject(s)
Communicable Diseases , Neonatal Sepsis , Perinatal Death , Sepsis , Vaccines , Infant, Newborn , Humans , Female , Pregnancy , Neonatal Sepsis/epidemiology , Neonatal Sepsis/prevention & control , Neonatal Sepsis/microbiology , Klebsiella pneumoniae , Meropenem , Bayes Theorem , South Africa
13.
Lancet Infect Dis ; 23(7): 806-815, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36933565

ABSTRACT

BACKGROUND: In the USA, oral nirmatrelvir-ritonavir is authorised for use in patients aged 12 years or older with mild-to-moderate COVID-19 who are at risk of progression to severe disease and hospitalisation. We aimed to establish the effectiveness of nirmatrelvir-ritonavir in preventing hospital admissions and death in people with COVID-19 in an outpatient prescribing context in the USA. METHODS: In this matched observational outpatient cohort study in the Kaiser Permanente Southern California (CA, USA) health-care system, data were extracted from electronic health records of non-hospitalised patients aged 12 years or older who received a positive SARS-CoV-2 PCR test result (their index test) between April 8 and Oct 7, 2022, and had not received another positive test result within the preceding 90 days. We compared outcomes between people who received nirmatrelvir-ritonavir and those who did not receive nirmatrelvir-ritonavir by matching cases by date, age, sex, clinical status (including care received, the presence or absence of acute COVID-19 symptoms at testing, and time from symptom onset to testing), vaccination history, comorbidities, health-care seeking during the previous year, and BMI. Our primary endpoint was the estimated effectiveness of nirmatrelvir-ritonavir in preventing hospital admissions or death within 30 days of a positive test for SARS-CoV-2. FINDINGS: 7274 nirmatrelvir-ritonavir recipients and 126 152 non-recipients with positive SARS-CoV-2 tests were included in our study. 5472 (75·2%) treatment recipients and 84 657 (67·1%) non-recipients were tested within 5 days of symptom onset. Nirmatrelvir-ritonavir had an overall estimated effectiveness of 53·6% (95% CI 6·6-77·0) in preventing hospital admission or death within 30 days of a positive test for SARS-CoV-2, which increased to 79·6% (33·9-93·8) when nirmatrelvir-ritonavir was dispensed within 5 days of symptom onset. Within the subgroup of patients tested within 5 days of symptom onset and whose treatment was dispensed on the day of their test, the estimated effectiveness of nirmatrelvir-ritonavir was 89·6% (50·2-97·8). INTERPRETATION: In a setting with high levels of COVID-19 vaccine uptake, nirmatrelvir-ritonavir effectively reduced the risk of hospital admission or death within 30 days of a positive outpatient SARS-CoV-2 test. FUNDING: US Centers for Disease Control and Prevention and US National Institutes of Health.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Cohort Studies , Ritonavir/therapeutic use , COVID-19 Drug Treatment , Hospitals , Antiviral Agents/therapeutic use
14.
Nat Commun ; 14(1): 1407, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918548

ABSTRACT

Expansion of the SARS-CoV-2 BA.4 and BA.5 Omicron subvariants in populations with prevalent immunity from prior infection and vaccination, and associated burden of severe COVID-19, has raised concerns about epidemiologic characteristics of these lineages including their association with immune escape or severe clinical outcomes. Here we show that BA.4/BA.5 cases in a large US healthcare system had at least 55% (95% confidence interval: 43-69%) higher adjusted odds of prior documented infection than time-matched BA.2 cases, as well as 15% (9-21%) and 38% (27-49%) higher adjusted odds of having received 3 and ≥4 COVID-19 vaccine doses, respectively. However, after adjusting for differences in epidemiologic characteristics among cases with each lineage, BA.4/BA.5 infection was not associated with differential risk of emergency department presentation, hospital admission, or intensive care unit admission following an initial outpatient diagnosis. This finding held in sensitivity analyses correcting for potential exposure misclassification resulting from unascertained prior infections. Our results demonstrate that the reduced severity associated with prior (BA.1 and BA.2) Omicron lineages, relative to the Delta variant, has persisted with BA.4/BA.5, despite the association of BA.4/BA.5 with increased risk of breakthrough infection among previously vaccinated or infected individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19 Vaccines , Breakthrough Infections
15.
Open Forum Infect Dis ; 10(1): ofad004, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36726535

ABSTRACT

Human papillomavirus (HPV) is an important cause of anogenital and oropharyngeal cancers, anogenital warts, and recurrent respiratory papillomatosis. Beginning in 2019, US guidelines recommended shared clinical decision-making (SCDM) for HPV vaccination among midadults (27-45 years). We conducted a narrative review of existing literature on HPV vaccination in midadults. The available evidence demonstrates that HPV vaccination in midadults is safe, efficacious, and likely to benefit both HPV-naïve midadults and those with previous infections. However, gaps in knowledge related to HPV vaccination have been identified among clinicians and midadult patients. Universal midadult HPV vaccination in the United States could avert 20 934-37 856 cancer cases over 100 years, costing $141 000-$1 471 000 per quality-adjusted life-year gained. Wide variation in these estimates reflects uncertainties in sexual behavior, HPV natural history, and naturally acquired immunity. Greater awareness among clinicians and midadult patients and broad implementation of SCDM may accelerate progress toward eliminating HPV-associated cancers and other diseases.

16.
Vaccine ; 41(10): 1649-1656, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36746740

ABSTRACT

INTRODUCTION: Uptake of COVID-19 vaccination remains suboptimal in the United States and other settings. Though early reports indicated that a strong majority of people were interested in receiving the COVID-19 vaccine, the association between vaccine intention and uptake is not yet fully understood. Ourobjective was todescribe predictors of vaccine uptake, and estimate the sensitivity, specificity, and predictive values of self-reported COVID-19 vaccine status compared to a comprehensive statewide COVID-19 vaccine registry. METHODS: A cohort of California residents that received a molecular test for SARS-CoV-2 infection during 24 February-5 December 2021 were enrolled in a telephone-administered survey. Survey participants were matched with records in a statewide immunization registry. Cox proportional hazards model were used to compare time to vaccination among those unvaccinated at survey enrollment by self-reported COVID-19 vaccination intention. RESULTS: Among 864 participants who were unvaccinated at the time of interview, 272 (31%) had documentation of receipt of COVID-19 vaccination at a later date; including 194/423 (45.9%) who had initially reported being willing to receive vaccination, 41/185 (22.2%) who reported being unsure about vaccination, and 37/278 (13.3%) who reported unwillingness to receive vaccination.Adjusted hazard ratios (aHRs) for registry-confirmed COVID-19 vaccination were 0.49 (95% confidence interval: 0.32-0.76) and 0.21 (0.12-0.36) for participants expressing uncertainty and unwillingness to receive vaccination, respectively, as compared with participants who reported being willing to receive vaccination. Time to vaccination was shorter among participants from higher-income households (aHR = 3.30 [2.02-5.39]) and who reported co-morbidities or immunocompromising conditions (aHR = 1.54 [1.01-2.36]).Sensitivity of self-reported COVID-19 vaccination status was 82% (80-85%) overall, and 98% (97-99%) among those referencing vaccination records; specificity was 87% (86-89%). CONCLUSION: Willingness to receive COVID-19 vaccination was an imperfect predictor of real-world vaccine uptake. Improved messaging about COVID-19 vaccination regardless of previous SARS-CoV-2 infection status may help improve uptake.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Vaccination Hesitancy , SARS-CoV-2 , Vaccination , Registries
17.
Nat Med ; 29(2): 358-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36593393

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infections in vaccinated individuals and reinfections in previously infected individuals have become increasingly common. Such infections highlight a broader need to understand the contribution of vaccination, including booster doses, and natural immunity to the infectiousness of individuals with SARS-CoV-2 infections, especially in high-risk populations with intense transmission, such as in prisons. Here we show that both vaccine-derived and naturally acquired immunity independently reduce the infectiousness of persons with Omicron variant SARS-CoV-2 infections in a prison setting. Analyzing SARS-CoV-2 surveillance data from December 2021 to May 2022 across 35 California state prisons with a predominately male population, we estimate that unvaccinated Omicron cases had a 36% (95% confidence interval (CI): 31-42%) risk of transmitting infection to close contacts, as compared to a 28% (25-31%) risk among vaccinated cases. In adjusted analyses, we estimated that any vaccination, prior infection alone and both vaccination and prior infection reduced an index case's risk of transmitting infection by 22% (6-36%), 23% (3-39%) and 40% (20-55%), respectively. Receipt of booster doses and more recent vaccination further reduced infectiousness among vaccinated cases. These findings suggest that, although vaccinated and/or previously infected individuals remain highly infectious upon SARS-CoV-2 infection in this prison setting, their infectiousness is reduced compared to individuals without any history of vaccination or infection. This study underscores benefit of vaccination to reduce, but not eliminate, transmission.


Subject(s)
COVID-19 , Male , Humans , SARS-CoV-2 , Reinfection , Breakthrough Infections
18.
Am J Epidemiol ; 192(6): 895-907, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36702469

ABSTRACT

Concerns about the duration of protection conferred by coronavirus disease 2019 (COVID-19) vaccines have arisen in postlicensure evaluations. "Depletion of susceptibles," a bias driven by differential accrual of infection among vaccinated and unvaccinated individuals, may obscure vaccine effectiveness (VE) estimates, hindering interpretation. We enrolled California residents who received molecular SARS-CoV-2 tests in a matched, test-negative design, case-control study to estimate VE of mRNA-based COVID-19 vaccines between February 23 and December 5, 2021. We analyzed waning protection following 2 vaccine doses using conditional logistic regression models. Additionally, we used data from a population-based serological study to adjust for "depletion-of-susceptibles" bias and estimated VE for 3 doses, by time since second dose receipt. Pooled VE of BNT162b2 and mRNA-1273 against symptomatic SARS-CoV-2 infection was 91.3% (95% confidence interval (CI): 83.8, 95.4) at 14 days after second-dose receipt and declined to 50.8% (95% CI: 19.7, 69.8) at 7 months. Adjusting for depletion-of-susceptibles bias, we estimated VE of 53.2% (95% CI: 23.6, 71.2) at 7 months after primary mRNA vaccination series. A booster dose of BN162b2 or mRNA-1273 increased VE to 95.0% (95% CI: 82.8, 98.6). These findings confirm that observed waning of protection is not attributable to epidemiologic bias and support ongoing efforts to administer additional vaccine doses to mitigate burden of COVID-19.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Vaccine Efficacy , SARS-CoV-2/genetics , RNA, Messenger
19.
Vaccine ; 41(6): 1190-1197, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36585281

ABSTRACT

BACKGROUND: Despite lower circulation of influenza virus throughout 2020-2022 during the COVID-19 pandemic, seasonal influenza vaccination has remained a primary tool to reduce influenza-associated illness and death. The relationship between the decision to receive a COVID-19 vaccine and/or an influenza vaccine is not well understood. METHODS: We assessed predictors of receipt of 2021-2022 influenza vaccine in a secondary analysis of data from a case-control study enrolling individuals who received SARS-CoV-2 testing. We used mixed effects logistic regression to estimate factors associated with receipt of seasonal influenza vaccine. We also constructed multinomial adjusted marginal probability models of being vaccinated for COVID-19 only, seasonal influenza only, or both as compared with receipt of neither vaccination. RESULTS: Among 1261 eligible participants recruited between 22 October 2021-22 June 2022, 43% (545) were vaccinated with both seasonal influenza vaccine and >1 dose of a COVID-19 vaccine, 34% (426) received >1 dose of a COVID-19 vaccine only, 4% (49) received seasonal influenza vaccine only, and 19% (241) received neither vaccine. Receipt of >1 COVID-19 vaccine dose was associated with seasonal influenza vaccination (adjusted odds ratio [aOR]: 3.72; 95% confidence interval [CI]: 2.15-6.43); this association was stronger among participants receiving >1 COVID-19 booster dose (aOR = 16.50 [10.10-26.97]). Compared with participants testing negative for SARS- CoV-2 infection, participants testing positive had lower odds of receipt of 2021-2022 seasonal influenza vaccine (aOR = 0.64 [0.50-0.82]). CONCLUSIONS: Recipients of a COVID-19 vaccine were more likely to receive seasonal influenza vaccine during the 2021-2022 season. Factors associated with individuals' likelihood of receiving COVID-19 and seasonal influenza vaccines will be important to account for in future studies of vaccine effectiveness against both conditions. Participants who tested positive for SARS-CoV-2 in our sample were less likely to have received seasonal influenza vaccine, suggesting an opportunity to offer influenza vaccination before or after a COVID-19 diagnosis.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Seasons , COVID-19 Testing , COVID-19 Vaccines , Pandemics/prevention & control , Case-Control Studies , SARS-CoV-2 , California/epidemiology , Vaccination
20.
medRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36238720

ABSTRACT

BACKGROUND: In the United States, oral nirmatrelvir-ritonavir (PaxlovidTM) is authorized for use among patients aged 12+ years with mild-to-moderate SARS-CoV-2 infection who are at risk for progression to severe COVID-19, including hospitalization. However, effectiveness under current real-world prescribing practices in outpatient settings is unclear. METHODS: We undertook a matched observational cohort study of non-hospitalized cases with SARS-CoV-2 infection to compare outcomes among those who received or did not receive nirmatrelvir-ritonavir within the Kaiser Permanente Southern California healthcare system. Cases were matched on testing date, age, sex, clinical status (including care received, presence or absence of acute COVID-19 symptoms at testing, and time from symptom onset to testing), history of vaccination, Charlson comorbidity index, prior-year healthcare utilization, and body mass index. Primary analyses evaluated effectiveness of nirmatrelvir-ritonavir in preventing hospital admission or death within 30 days after a positive test. Secondary analyses evaluated effectiveness against intensive care unit admission, mechanical ventilation, or death within 60 days after a positive test. We measured treatment effectiveness as (1-adjusted hazards ratio [aHR])*100%, estimating the aHR via Cox proportional hazards models. RESULTS: Analyses included 7,274 nirmatrelvir-ritonavir recipients and 126,152 non-recipients with positive results from SARS-CoV-2 tests undertaken in outpatient settings between 8 April and 7 October, 2022. Overall, 114,208 (85.6%) and 81,739 (61.3%) of 133,426 participants had received 2+ and 3+ COVID-19 vaccine doses, respectively. A total of 111,489 (83.6% of 133,426) cases were symptomatic at the point of testing, with 5,472 (75.2% of 7,274) treatment recipients and 84,657 (67.1% of 126,152) non-recipients testing within 0-5 days after symptom onset. Effectiveness in preventing hospital admission or death within 30 days after a positive test was 79.6% (95% confidence interval: 33.9% to 93.8%) for cases dispensed nirmatrelvir-ritonavir within 0-5 days after symptom onset; within the subgroup of cases tested 0-5 days after symptom onset and dispensed treatment on the day of their test, effectiveness was 89.6% (50.2% to 97.8%). Effectiveness declined to 43.8% (-33.3% to 81.7%) for treatment course dispensed 6+ days after symptom onset or to cases who were not experiencing acute clinical symptoms. Overall, for cases dispensed treatment at any time within their clinical course, effectiveness was 53.6% (6.6% to 77.0%). Effectiveness in preventing the secondary endpoint of intensive care unit admission, mechanical ventilation, or death within 60 days after a positive test was 89.2% (-25.0% to 99.3%) for cases dispensed treatment 0-5 days after symptom onset and 84.1% (18.8% to 96.9%) for cases dispensed treatment at any time. Subgroup analyses identified similar effectiveness estimates among cases who had received 2+ or 3+ COVID-19 vaccine doses. IMPLICATIONS: In a setting with high levels of COVID-19 vaccine and booster uptake, receipt of nirmatrelvir-ritonavir 0-5 days after symptom onset was associated with substantial reductions in risk of hospital admission or death within 30 days after a positive outpatient SARS-CoV-2 test.

SELECTION OF CITATIONS
SEARCH DETAIL
...