Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38661008

ABSTRACT

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.


Subject(s)
Centrioles , Cilia , Kinetochores , Mitosis , Transcription Factors , Cilia/metabolism , Humans , Centrioles/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Kinetochores/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Animals , Mice , Genomic Instability , Centrosome/metabolism , Spindle Apparatus/metabolism , HeLa Cells , Axoneme/metabolism
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508075

ABSTRACT

Double PHD fingers 3 (DPF3) protein exists as two splicing variants, DPF3b and DPF3a, the involvement of which in human cancer and neurodegeneration is beginning to be increasingly recognised. Both isoforms have recently been identified as intrinsically disordered proteins able to undergo amyloid fibrillation. Upon their aggregation, DPF3 proteins exhibit an intrinsic fluorescence in the visible range, referred to as deep-blue autofluorescence (dbAF). Comprehension of such phenomenon remaining elusive, we investigated in the present study the influence of pH on the optical properties of DPF3b and DPF3a fibrils. By varying the excitation wavelength and the pH condition, the two isoforms were revealed to display several autofluorescence modes that were defined as violet, deep-blue, and blue-green according to their emission range. Complementarily, analysis of excitation spectra and red edge shift plots allowed to better decipher their photoselection mechanism and to highlight isoform-specific excitation-emission features. Furthermore, the observed violation to Kasha-Vavilov's rule was attributed to red edge excitation shift effects, which were impacted by pH-mediated H-bond disruption, leading to changes in intramolecular charge and proton transfer, or π-electrons delocalisation. Finally, emergence of different autofluorescence emitters was likely related to structurally distinct fibrillar assemblies between isoforms, as well as to discrepancies in the amino acid composition of their aggregation prone regions.


Subject(s)
Amino Acids , Amyloid , Humans , Amyloid/chemistry , Amino Acids/chemistry , Protein Isoforms/metabolism , Protons , Hydrogen-Ion Concentration
3.
Int J Mol Sci ; 23(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36499617

ABSTRACT

Double-PHD fingers 3 (DPF3) is a BAF-associated human epigenetic regulator, which is increasingly recognised as a major contributor to various pathological contexts, such as cardiac defects, cancer, and neurodegenerative diseases. Recently, we unveiled that its two isoforms (DPF3b and DPF3a) are amyloidogenic intrinsically disordered proteins. DPF3 isoforms differ from their C-terminal region (C-TERb and C-TERa), containing zinc fingers and disordered domains. Herein, we investigated the disorder aggregation properties of C-TER isoforms. In agreement with the predictions, spectroscopy highlighted a lack of a highly ordered structure, especially for C-TERa. Over a few days, both C-TERs were shown to spontaneously assemble into similar antiparallel and parallel ß-sheet-rich fibrils. Altered metal homeostasis being a neurodegeneration hallmark, we also assessed the influence of divalent metal cations, namely Cu2+, Mg2+, Ni2+, and Zn2+, on the C-TER aggregation pathway. Circular dichroism revealed that metal binding does not impair the formation of ß-sheets, though metal-specific tertiary structure modifications were observed. Through intrinsic and extrinsic fluorescence, we found that metal cations differently affect C-TERb and C-TERa. Cu2+ and Ni2+ have a strong inhibitory effect on the aggregation of both isoforms, whereas Mg2+ impedes C-TERb fibrillation and, on the contrary, enhances that of C-TERa. Upon Zn2+ binding, C-TERb aggregation is also hindered, and the amyloid autofluorescence of C-TERa is remarkably red-shifted. Using electron microscopy, we confirmed that the metal-induced spectral changes are related to the morphological diversity of the aggregates. While metal-treated C-TERb formed breakable and fragmented filaments, C-TERa fibrils retained their flexibility and packing properties in the presence of Mg2+ and Zn2+ cations.


Subject(s)
Intrinsically Disordered Proteins , Humans , Intrinsically Disordered Proteins/chemistry , Amyloid/metabolism , Metals , Chelating Agents/chemistry , Protein Isoforms , Cations, Divalent
4.
Int J Biol Macromol ; 218: 57-71, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35863661

ABSTRACT

Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied. In a previous work, we have demonstrated the first evidence of DPF3a being a disordered protein sensitive to amyloid fibrillation. Intrinsically disordered proteins (IDPs) lack a defined tertiary structure, existing as a dynamic conformational ensemble, allowing them to act as hubs in protein-protein interaction networks. In the present study, we have more thoroughly characterised DPF3a in vitro behaviour, as well as unravelled and compared the structural properties of the DPF3b isoform, using an array of predictors and biophysical techniques. Predictions, spectroscopy, and dynamic light scattering have revealed a high content in disorder: prevalence of random coil, aromatic residues partially to fully exposed to the solvent, and large hydrodynamic diameters. DPF3a appears to be more disordered than DPF3b, and exhibits more expanded conformations. Furthermore, we have shown that they both time-dependently aggregate into amyloid fibrils, as revealed by typical circular dichroism, deep-blue autofluorescence, and amyloid-dye binding assay fingerprints. Although spectroscopic and microscopic analyses have unveiled that they share a similar aggregation pathway, DPF3a fibrillates at a faster rate, likely through reordering of its C-terminal domain.


Subject(s)
Intrinsically Disordered Proteins , Amyloid/chemistry , Intrinsically Disordered Proteins/chemistry , Protein Isoforms/metabolism , Transcription Factors/metabolism , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...