Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202400860, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699858

ABSTRACT

2,5-Dimethyl-2,4-hexadiene is a readily available and easily managable compound, whose symmetric and polymethylated dienic structure should be prone to engage in cross-metathesis reactions with other alkenes, but this has not been apparently exploited so far. Here we show that this reactant enables the easy synthesis of tri- and tetra-susbtituted alkenes (i. e. isobutylenyl and prenyl groups) from simple alkenes under mild reaction conditions, not only with the conventional 2nd generation Grubbs catalyst but also with other Grela-type catalyts such as StickyCat,TM AquaMetTM and GreenCatTM. The use of liquid and low volatile 2,5-dimethyl-2,4-hexadiene avoids the use of gaseous alkene reactants and, besides, showcases the reactivity of polyisoprene (rubber), thus allowing to optimize the reaction conditions for rubber upcycling, after metathesis reaction of the pristine or used polymer with simple alkenes. These results bring low volatile isoprene-type compounds as privileged poly-substituted reactants for alkene cross-metathesis reactions.

2.
ACS Phys Chem Au ; 4(3): 242-246, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38800722

ABSTRACT

Photon upconversion based on triplet-triplet annihilation (TTA-UC) is an attractive wavelength conversion with increasing use in organic synthesis in the homogeneous phase; however, this technology has not performed with canonical solid catalysts yet. Herein, a BOPHY dye covalently anchored on silica is successfully used as a sensitizer in a TTA system that efficiently catalyzes Mizoroki-Heck coupling reactions. This procedure has enabled the implementation of in-flow reaction conditions for the synthesis of a variety of aromatic compounds, and mechanistic proof has been obtained by means of transient absorption spectroscopy.

3.
Commun Chem ; 7(1): 76, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575790

ABSTRACT

Metal individual atoms and few-atom clusters show extraordinary catalytic properties for a variety of organic reactions, however, their implementation in total synthesis of complex organic molecules is still to be determined. Here we show a 11-step linear synthesis of the natural product (±)-Licarin B, where individual Pd atoms (Pd1) catalyze the direct aerobic oxidation of an alcohol to the carboxylic acid (steps 1 and 6), Cu2-7 clusters catalyze carbon-oxygen cross couplings (steps 3 and 8), Pd3-4 clusters catalyze a Sonogashira coupling (step 4) and Pt3-5 clusters catalyze a Markovnikov hydrosylilation of alkynes (step 5), as key reactions during the synthetic route. In addition, the new synthesis of Licarin B showcases an unexpected selective alkene hydrogenation with metal-free NaBH4 and an acid-catalyzed intermolecular carbonyl-olefin metathesis as the last step, to forge a trans-alkene group. These results, together, open new avenues in the use of metal individual atoms and clusters in organic synthesis, and confirm their exceptional catalytic activity in late stages during complex synthetic programmes.

4.
Chem Sci ; 15(7): 2351-2358, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362416

ABSTRACT

Among the multiple applications of metal-organic frameworks (MOFs), their use as a porous platform for the support of metallic nanoparticles stands out for the possibility of integrating a good anchorage, that improves the stability of the catalyst, with the presence of a porous network that allows the diffusion of substrates and products. Here we introduce an alternative way to control the injection of Au nanoparticles at variable stages of nucleation of a titanium(iv) MOF crystal (MUV-10). This allows the analysis of the different modes of nanoparticle integration into the porous matrix as a function of the crystal formation stage and their correlation with the catalytic performance of the resulting composite. Our results reveal a direct effect of the stage at which the Au nanoparticles are integrated into MUV-10 crystals not only on their catalytic activity for the cyclotrimerization of propargyl esters and the hydrochlorination of alkynes, but also on the selectivity and recyclability of the final solid catalyst, which are far superior than those reported for the same reactions with TiO2 supports.

5.
RSC Adv ; 14(7): 4742-4747, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38318612

ABSTRACT

Nitrogen (N2) fixation is a key reaction in biological and industrial chemistry, which does not occur spontaneously under ambient conditions but often depends on very specific catalysts and harsh reaction processes. Here we show that exposing exfoliated black phosphorus to the open air triggers, concomitantly, the oxidation of the two-dimensional (2D) material and the fixation of up to 100 parts per million (0.01%) of N2 on the surface. The fixation also occurs in pristine non-exfoliated material. Besides, other allotropic forms of phosphorus, like red P, also fixes N2 during ambient oxidation, suggesting that the N2 fixation process is intrinsic with phosphorus oxidation and does not depend on the chemical structure or the dimensionality of the solid. Despite the low amounts of N2 fixed, this serendipitous discovery could have fundamental implications on the chemistry and environmental stability of phosphorous and the design of related catalysts for N2 fixation.

6.
Chempluschem ; : e202300631, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38375758

ABSTRACT

The surface of SBA-15 mesoporous silica was modified by N-hydroxyphthalimide (NHPI) moieties acting as immobilized active species for aerobic oxidation of alkylaromatic hydrocarbons. The incorporation was carried out by four original approaches: the grafting-from and grafting-onto techniques, using the presence of surface silanols enabling the formation of particularly stable O-Si-C bonds between the silica support and the organic modifier. The strategies involving the Heck coupling led to the formation of NHPI groups separated from the SiO2 surface by a vinyl linker, while one of the developed modification paths based on the grafting of an appropriate organosilane coupling agent resulted in the active phase devoid of this structural element. The successful course of the synthesis was verified by FTIR and 1 H NMR measurements. Furthermore, the formed materials were examined in terms of their chemical composition (elemental analysis, thermal analysis), structure of surface groups (13 C NMR, XPS), porosity (low-temperature N2 adsorption), and tested as catalysts in the aerobic oxidation of p-xylene at atmospheric pressure. The highest conversion and selectivity to p-toluic acid were achieved using the catalyst with enhanced availability of non-hydrolyzed NHPI groups in the pore system. The catalytic stability of the material was additionally confirmed in several subsequent reaction cycles.

7.
Dalton Trans ; 52(47): 18018-18026, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37986612

ABSTRACT

Host-guest chemistry within the confined space of metal-organic frameworks (MOFs) offers an almost unlimited myriad of possibilities, hardly accessible with other materials. Here we report the synthesis and physical characterization, with atomic resolution by single-crystal X-ray diffraction, of a novel water-stable tridimensional MOF, derived from the amino acid S-methyl-L-cysteine, {SrZn6[(S,S)-Mecysmox]3(OH)2(H2O)}·9H2O (1), and its application as a robust and efficient solid catalyst for the cycloaddition reaction of ethylene/propylene oxide with CO2 to afford ethylene/propylene carbonate with yields of up to 95% and selectivity of up to 100%. These results nicely illustrate the great potential of MOFs to be game changers for the selective synthesis of industrially relevant products, representing a powerful alternative to the current heterogeneous catalysts.

8.
J Am Chem Soc ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922487

ABSTRACT

Commercially available zeolite Y modulates the catalytic activity and selectivity of ultrasmall silver species during the Buchner reaction and the carbene addition to methylene and hydroxyl bonds, by simply exchanging the counter cations of the zeolite framework. The zeolite acts as a macroligand to tune the silver catalytic site, enabling the use of this cheap and recyclable solid catalyst for the in situ formation of carbenes from diazoacetate and selective insertion in different C-H (i.e., cyclohexane) and C-O (i.e., water) bonds. The amount of catalyst in the reaction can be as low as ≤0.1 mol % silver. Besides, this reactivity allows deeply drying the HY zeolite framework by making the strongly adsorbed water molecules react with the in situ formed carbenes.

9.
Chemistry ; 29(51): e202302315, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37697892

ABSTRACT

Invited for the cover of this issue are Jesús Ferrando-Soria, Donatella Armentano, Antonio Leyva-Pérez, Emilio Pardo and co-workers at University of Valencia, Technical University of Valencia and University of Calabria. The image depicts the crystal structure of a novel ZnII biological metal-organic framework that mimics ß-lactamase enzymes. Read the full text of the article at 10.1002/chem.202301325.


Subject(s)
Biomimetics , Metal-Organic Frameworks , Humans , Catalysis , Penicillins , beta-Lactamases , Anti-Bacterial Agents , Zinc
10.
Org Biomol Chem ; 21(35): 7136-7140, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37608648

ABSTRACT

Pd-supported catalysts are fundamental tools in organic reactions involving H2 splitting. Here we show that 1,4-enediols enriched in one diastereoisomer are produced from the classical Pd-catalyzed semi-hydrogenation reaction with H2, starting from the corresponding, widely available 1,4-diacetylenic diols. The semi-hydrogenation reaction proceeds concomitantly with the desymmetrization of the meso/racemic form of the enediol. We also show that these products, if added in advance to H2, completely inactivate the Pd catalyst (only when added before H2). These results provide a simple way not only to produce 1,4-enediols enriched in one diastereoisomer by a classical catalytic method but also to stop H2 dissociation on Pd nanoparticles.

11.
RSC Adv ; 13(34): 23859-23869, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577098

ABSTRACT

Low-density (LD) and high-density polyethylene (HDPE), recycled or not, incorporates up to 7 wt% of ester groups after reacting either with ethyl diazoacetate (EDA) under catalytic and solvent free-reaction conditions, or with maleic anhydride (MA) and acrylates (AC) under catalytic radical conditions. The resulting upcycled polyethylene esters are hydrolytically stable at extreme pH (0-14) and can be further transformed into carboxylic acids, carboxylates, other esters and amides.

12.
Inorg Chem ; 62(28): 10984-10992, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37393543

ABSTRACT

The isomerization (chain-walking) reaction of terminal to internal alkenes is catalyzed by part-per-million amounts of practically any Ru source when the reaction is carried out with a neat terminal alkene. Here, we provide evidence that the soluble starting Ru sources evolve to catalytically active peralkene Ru(II) species under reaction conditions. These species may also explain the isomerization products found during other Ru-catalyzed alkene processes, i.e., alkene metathesis reactions. A Finke-Watzky mechanism for catalyst formation is consistent with the evidence obtained.

13.
Chemistry ; 29(51): e202301325, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37279057

ABSTRACT

ß-Lactam antibiotics are one of the most commonly prescribed drugs to treat bacterial infections. However, their use has been somehow limited given the emergence of bacteria with resistance mechanisms, such as ß-lactamases, which inactivate them by degrading their four-membered ß-lactam rings. So, a total knowledge of the mechanisms governing the catalytic activity of ß-lactamases is required. Here, we report a novel Zn-based metal-organic framework (MOF, 1), possessing functional channels capable to accommodate and interact with antibiotics, which catalyze the selective hydrolysis of the penicillinic antibiotics amoxicillin and ceftriaxone. In particular, MOF 1 degrades, very efficiently, the four-membered ß-lactam ring of amoxicillin, acting as a ß-lactamase mimic, and expands the very limited number of MOFs capable to mimic catalytic enzymatic processes. Combined single-crystal X-ray diffraction (SCXRD) studies and density functional (DFT) calculations offer unique snapshots on the host-guest interactions established between amoxicillin and the functional channels of 1. This allows to propose a degradation mechanism based on the activation of a water molecule, promoted by a Zn-bridging hydroxyl group, concertedly to the nucleophilic attack to the carbonyl moiety and the cleaving of C-N bond of the lactam ring.


Subject(s)
Metal-Organic Frameworks , beta-Lactamases , beta-Lactamases/chemistry , Penicillins , Biomimetics , Anti-Bacterial Agents/chemistry , beta-Lactams , Catalysis , Amoxicillin , Zinc/chemistry
14.
J Am Chem Soc ; 145(23): 12487-12498, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37261429

ABSTRACT

High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of "electronic grade" structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion.

15.
Sci Rep ; 13(1): 10376, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369737

ABSTRACT

Ultrasmall silver clusters in reduced state are difficult to synthesize since silver atoms tend to rapidly aggregate into bigger entities. Here, we show that dimers of reduced silver (Ag2) are formed within the framework of a metal-organic framework provided with thioether arms in their walls (methioMOF), after reduction with NaBH4 of the corresponding Ag+-methioMOF precursor. The resulting Ag2-methioMOF catalyzes the methanation reaction of carbon dioxide (CO2 to CH4 hydrogenation reaction) under mild reaction conditions (1 atm CO2, 4 atm H2, 140 °C), with production rates much higher than Ag on alumina and even comparable to the state-of-the-art Ru on alumina catalyst (Ru-Al2O3) under these reaction conditions, according to literature results.

16.
J Org Chem ; 88(9): 5962-5971, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37026761

ABSTRACT

The fragrance compound indomuscone is used here as a scaffold to prepare two different sterically hindered phosphines, one aromatic and another alkylic, in good yields, after four synthetic steps. The new phosphines show enhanced electronic and steric properties when compared to benchmark commercial phosphine ligands, which is reflected in the catalytic results obtained for representative palladium-catalyzed reactions such as the telomerization reaction, the Buchwald-Hartwig and Suzuki cross-coupling reactions of chloroaromatic rings, and the semi-hydrogenation reaction of an alkyne. In particular, the indomuscone-based aromatic phosphine ligand leads to the highest selectivity for the tail-to-head telomerization product between isoprene and methanol, while the indomuscone-based alkylic phosphine ligand shows extraordinary similarities with the Buchwald-type SPhos phosphine ligand.

17.
ChemSusChem ; 16(16): e202300200, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37115962

ABSTRACT

The synthesis of cyclized organic compounds with more than ten atoms (macrocycles) is traditionally based on reversible reactions under highly diluted conditions, typically <0.05 M, in order to circumvent the formation of intermolecular products. These reaction conditions severely hamper industrial productivity and the use of solid catalysts. Herein, it is shown that the intramolecular Mizoroki-Heck reaction of ω-iodide cinnamates proceeds at 1 M concentration when catalyzed by few-atom Pd clusters, either in solution or supported on a solid, to give different macrocycles in good yields. This paradigmatic increase in reaction concentration not only opens the door for macrocycle production with high throughputs but also enables the use of solid catalysts for a macrocyclization reaction in flow.

18.
Inorg Chem ; 62(19): 7353-7359, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37116204

ABSTRACT

Understanding the host-guest chemistry in MOFs represents a research field with outstanding potential to develop in a rational manner novel porous materials with improved performances in fields such as heterogeneous catalysis. Herein, we report a family of three isoreticular MOFs derived from amino acids and study the influence of the number and nature of functional groups decorating the channels as a catalyst in hemiketalization reactions. In particular, a multivariate (MTV) MOF 3, prepared by using equal percentages of amino acids L-serine and L-mecysteine, in comparison to single-component ("traditional") MOFs, derived from either L-serine or L-mecysteine (MOFs 1 and 2), exhibits the most efficient catalytic conversions for the hemiketalization of different aldehydes and ketalization of cyclohexanone. On the basis of the experimental data reported, the good catalytic performance of MTV-MOF 3 is attributed to the intrinsic heterogeneity of MTV-MOFs. These results highlight the potential of MTV-MOFs as strong candidates to mimic natural nonacidic enzymes, such as glycosidases, and to unveil novel catalytic mechanisms not so easily accessible with other microporous materials.

19.
J Am Chem Soc ; 145(18): 10342-10354, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37115008

ABSTRACT

The combination of well-defined Fe3+ isolated single-metal atoms and Ag2 subnanometer metal clusters within the channels of a metal-organic framework (MOF) is reported and characterized by single-crystal X-ray diffraction for the first time. The resulting hybrid material, with the formula [Ag02(Ag0)1.34FeIII0.66]@NaI2{NiII4[CuII2(Me3mpba)2]3}·63H2O (Fe3+Ag02@MOF), is capable of catalyzing the unprecedented direct conversion of styrene to phenylacetylene in one pot. In particular, Fe3+Ag02@MOF─which can easily be obtained in a gram scale─exhibits superior catalytic activity for the TEMPO-free oxidative cross-coupling of styrenes with phenyl sulfone to give vinyl sulfones in yields up to >99%, which are ultimately transformed, in situ, to the corresponding phenylacetylene product. The results presented here constitute a paradigmatic example of how the synthesis of different metal species in well-defined solid catalysts, combined with speciation of the true metal catalyst of an organic reaction in solution, allows the design of a new challenging reaction.

20.
J Phys Chem Lett ; 14(4): 965-970, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36689618

ABSTRACT

An alternative to the Lindlar catalyst for the semihydrogenation reaction of alkynes to alkenes is of high interest. Here we show that palladium on carbon (Pd/C), i.e., a widely available supported Pd catalyst, is converted from an unselective to a chemoselective catalyst during the semihydrogenation reaction of alkynes, after the addition of catalytic amounts of commercially available electron-poor phosphines. The catalytic activity is ≤7 times greater, and the selectivity is comparable to that of the industrial benchmark Lindlar catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...