Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Virol ; 98(6): e0029524, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38712945

ABSTRACT

Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE: Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.


Subject(s)
Hepatitis E virus , Hepatitis E , RNA, Viral , Ribavirin , Virus Replication , Hepatitis E virus/genetics , Hepatitis E virus/drug effects , Humans , Hepatitis E/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Ribavirin/pharmacology , Antiviral Agents/pharmacology , Hep G2 Cells , Protein Processing, Post-Translational , Recombination, Genetic
2.
J Virol Methods ; 327: 114920, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574772

ABSTRACT

INTRODUCTION: We evaluated the performance of the automated Altostar HEV RNA platform for detecting HEV RNA. METHODS AND RESULTS: Clinical performance was determined by testing 81 plasma samples and 10 fecal samples manually quantified previously with the Realstar RT-PCR assay using the Magnapure instrument for extraction. The assays were concordant for 79/81 plasma samples (97.5%) and 10/10 (100%) fecal samples. The two plasma samples that tested negative with the Altostar assay had a very low HEV RNA concentration (1.6 and 1.4 log10 IU/ml). Quantitative results obtained with the automated platform and the manual workflow were highly correlated (ρ= 0.98, p<0.01). The intra-run and inter-run standard deviation were 0.09 IU/ml and 0.13 IU/ml respectively. The assay was linear from 2 to 6 log IU/ml. The limit of detection determined by Probit analysis with the WHO HEV RNA standard was 7.6 [95% CI: 4.4-52.5] IU/ml. CONCLUSIONS: The Altostar platform enables highly accurate testing for the detection of HEV RNA in stool and the quantification of HEV RNA in plasma. This allowed us to shorten turnaround times and to save time for the technical staff.


Subject(s)
Automation, Laboratory , Feces , Hepatitis E virus , Hepatitis E , RNA, Viral , Feces/virology , Humans , RNA, Viral/isolation & purification , RNA, Viral/blood , RNA, Viral/analysis , RNA, Viral/genetics , Hepatitis E virus/isolation & purification , Hepatitis E virus/genetics , Hepatitis E/diagnosis , Hepatitis E/virology , Hepatitis E/blood , Sensitivity and Specificity , Plasma/virology , Molecular Diagnostic Techniques/methods
4.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37243235

ABSTRACT

The identification of seven cases of hepatitis E virus infection in a French rural hamlet in April 2015 led to investigations confirming the clustering and identifying the source of the infection. Laboratories and general practitioners in the area actively searched for other cases based on RT-PCR and serological tests. The environment, including water sources, was also checked for HEV RNA. Phylogenetic analyses were performed to compare HEV sequences. No other cases were found. Six of the seven patients lived in the same hamlet, and the seventh used to visit his family who lived there. All HEV strains were very similar and belonged to the HEV3f subgenotype, confirming the clustering of these cases. All the patients drank water from the public network. A break in the water supply to the hamlet was identified at the time the infection probably occurred; HEV RNA was also detected in a private water source that was connected to the public water network. The water flowing from the taps was quite turbid during the break. The private water supply containing HEV RNA was the likely source of the contamination. Private water supplies not disconnected from the public network are still frequent in rural areas, where they may contribute to public water pollution.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , Phylogeny , Hepatitis E/epidemiology , RNA, Viral/genetics , France/epidemiology
5.
J Neurovirol ; 29(3): 358-363, 2023 06.
Article in English | MEDLINE | ID: mdl-37171751

ABSTRACT

Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. In rare cases, HEV may generate neurologic lesions such as neuralgic amyotrophy, Guillain-Barré syndrome, and meningoencephalitis. Thirteen cases of HEV meningoencephalitis have been reported over 20 years. The clinical landscape varied from mild symptoms to coma and seizures. Most of patients were immunocompetent adults and spontaneously recovered. We report here the case of a 44-year-old immunocompetent adult with HEV meningoencephalitis presenting with aggressiveness and then coma. The evolution was spontaneously favorable without any specific treatment. This clinical case aims to draw attention on this emerging and probably under-recognized cause of meningoencephalitis.


Subject(s)
Encephalitis , Hepatitis E virus , Hepatitis E , Meningoencephalitis , Rabies , Adult , Humans , Antibodies , Coma , Confusion , D-Aspartic Acid , Hepatitis E/diagnosis
6.
Expert Rev Anti Infect Ther ; 21(2): 143-148, 2023 02.
Article in English | MEDLINE | ID: mdl-36625025

ABSTRACT

INTRODUCTION: Hepatitis E Virus (HEV) was initially thought to cause only acute infections, but the discovery of chronic hepatitis E in immunocompromised patients has profoundly changed our understanding of the virus. AREAS COVERED: We describe the physiopathology, diagnosis, and clinical management of chronic HEV infection. The virus can persist in nearly two-thirds of immunosuppressed patients. Reducing immunosuppression is the first immunomodulatory strategy to cure chronic hepatitis E. But this may not always be feasible or effective. Ribavirin monotherapy for 3 months has been recommended as first-line treatment for chronically infected patients. Ribavirin is around 80% effective at eradicating HEV in retrospective studies. Apart from ribavirin, interferon has been successfully used in liver transplants recipients, but if the patient does not respond, no other alternative drug is available. The vaccine available to prevent HEV infection is one available only in China. EXPERT OPINION: HEV infection is a major concern in immunocompromised patients. But the therapeutic arsenal is limited to ribavirin and interferon. Both produce several side effects and new drugs are urgently needed. Moreover, preventive strategies to limit HEV transmission and/or evolution to a chronic infection are also required.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , Hepatitis E/diagnosis , Hepatitis E/drug therapy , Hepatitis E/prevention & control , Ribavirin/therapeutic use , Antiviral Agents/therapeutic use , Persistent Infection , Retrospective Studies , Interferons , Immunocompromised Host
7.
Clin Infect Dis ; 76(3): e514-e517, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35796540

ABSTRACT

We used variant typing polymerase chain reaction to describe the evolution of severe acute respiratory syndrome coronavirus 2 Omicron sublineages between December 2021 and mid-March 2022. The selective advantage of the BA.2 variant over BA.1 is not due to greater nasopharyngeal viral loads.


Subject(s)
COVID-19 , Humans , Viral Load , Polymerase Chain Reaction , SARS-CoV-2/genetics , Serologic Tests
8.
Blood Transfus ; 21(2): 110-118, 2023 03.
Article in English | MEDLINE | ID: mdl-35969132

ABSTRACT

BACKGROUND: The French health authorities are considering expanding the current selective hepatitis E virus (HEV)-RNA testing procedure to include all donations in order to further reduce transfusion-transmitted HEV infection. Data obtained from blood donors (BDs) tested for HEV-RNA between 2015 and 2021 were used to assess the most efficient nucleic acid testing (NAT) strategy. MATERIALS AND METHODS: Viral loads (VLs) and the plasma volume of blood components, as well as an HEV-RNA dose of 3.85 log IU as the infectious threshold and an assay with a 95% limit of detection (LOD) at 17 IU/mL, were used to assess the proportion of: (i) HEV-RNA-positive BDs that would remain undetected; and (ii) blood components associated with these undetected BDs with an HEV-RNA dose >3.85 log IU, considering 4 NAT options (Individual testing [ID], MP-6, MP-12, and MP-24). RESULTS: Of the 510,118 BDs collected during the study period, 510 (0.10%) were HEV-RNA-positive. Based on measurable VLs available in 388 cases, 1%, 15.2%, 21.8%, and 32.6% of BDs would theoretically pass undetected due to a VL below the LOD of ID, MP-6, MP-12, and MP-24 testing, respectively. All BDs associated with a potentially infectious blood component would be detected with ID-NAT while 13% of them would be undetected with MP-6, 19.6% with MP-12, and 30.4% with MP-24 depending on the plasma volume. No red blood cell (RBC) components with an HEV-RNA dose >3.85 log IU would enter the blood supply, regardless of the NAT strategy used. DISCUSSION: A highly sensitive ID-NAT would ensure maximum safety. However, an MP-based strategy can be considered given that: (i) the risk of transmission is closely related to the plasma volume of blood components; (ii) RBC are the most commonly transfused components and have a low plasma content; and (iii) HEV-RNA doses transmitting infection exceed 4 log IU. To minimise the potential risk associated with apheresis platelet components and fresh frozen plasma, less than 12 donations should be pooled using an NAT assay with a LOD of approximately 20 IU/mL.


Subject(s)
Blood Component Removal , Donor Selection , Humans , Blood Platelets , RNA, Viral , France , Blood Donors
9.
Viruses ; 14(6)2022 05 25.
Article in English | MEDLINE | ID: mdl-35746610

ABSTRACT

The hepatitis A virus (HAV) is still one of the leading causes of acute viral hepatitis worldwide, despite there being an anti-HAV vaccine [...].


Subject(s)
Hepatitis A virus , Hepatitis A , Hepatitis, Viral, Human , Acute Disease , Hepatitis A/prevention & control , Hepatitis A Antibodies , Hepatitis A virus/genetics , Hepatitis, Viral, Human/prevention & control , Humans , Vaccines, Inactivated
10.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: mdl-35632806

ABSTRACT

To evaluate the diagnostic performance of the Liaison® Murex anti-HEV IgM and IgG assays running on the Liaison® instrument and compare the results with those obtained with Wantai HEV assays. We tested samples collected in immunocompetent and immunocompromised patients during the acute (HEV RNA positive, anti-HEV IgM positive) and the post-viremic phase (HEV RNA negative, anti-HEV IgM positive) of infections. The specificity was assessed by testing HEV RNA negative/anti-HEV IgG-IgM negative samples. The clinical sensitivity of the Liaison® IgM assay was 100% for acute-phase samples (56/56) and 57.4% (27/47) for post-viremic samples from immunocompetent patients. It was 93.8% (30/32) for acute-phase (viremic) samples and 71%% (22/31) for post-viremic samples from immunocompromised patients. The clinical sensitivity of the Liaison® IgG assay was 100% for viremic samples (56/56) and 94.6% (43/47) for post-viremic samples from immunocompetent patients. It was 84.3% (27/32) for viremic samples and 93.5% (29/31) for post-viremic samples from immunocompromised patients. Specificity was very high (>99%) in both populations. We checked the limit of detection stated for the Liaison® IgG assay (0.3 U/mL). The clinical performance of the Liaison® ANTI-HEV assays was good. These rapid, automated assays for detecting anti-HEV antibodies will greatly enhance the arsenal for diagnosing HEV infections.


Subject(s)
Hepatitis E virus , Hepatitis Antibodies , Hepatitis E virus/genetics , Humans , Immunoglobulin G , Immunoglobulin M , RNA , Sensitivity and Specificity
13.
Viruses ; 14(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35215825

ABSTRACT

Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.


Subject(s)
Epithelial Cells/virology , RNA Viruses/physiology , Virus Release , Cell Polarity , Humans , Virion/physiology , Virus Assembly , Virus Replication
14.
Viruses ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35215916

ABSTRACT

Studies comparing SARS-CoV-2 nasopharyngeal (NP) viral load (VL) according to virus variant and host vaccination status have yielded inconsistent results. We conducted a single center prospective study between July and September 2021 at the drive-through testing center of the Toulouse University Hospital. We compared the NP VL of 3775 patients infected by the Delta (n = 3637) and Alpha (n = 138) variants, respectively. Patient's symptoms and vaccination status (2619 unvaccinated, 636 one dose and 520 two doses) were recorded. SARS-CoV-2 RNA testing and variant screening were assessed by using Thermo Fisher® TaqPath™ COVID-19 and ID solutions® ID™ SARS-CoV-2/VOC evolution Pentaplex assays. Delta SARS-CoV-2 infections were associated with higher VL than Alpha (coef = 0.68; p ≤ 0.01) independently of patient's vaccination status, symptoms, age and sex. This difference was higher for patients diagnosed late after symptom onset (coef = 0.88; p = 0.01) than for those diagnosed early (coef = 0.43; p = 0.03). Infections in vaccinated patients were associated with lower VL (coef = -0.18; p ≤ 0.01) independently of virus variant, symptom, age and sex. Our results suggest that Delta infections could lead to higher VL and for a longer period compared to Alpha infections. By effectively reducing the NP VL, vaccination could allow for limiting viral spread, even with the Delta variant.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , RNA, Viral/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Viral Load/immunology , Viral Load/statistics & numerical data , Adult , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Hospitalization , Humans , Male , Nasopharynx/virology , Prospective Studies , SARS-CoV-2/genetics , Viral Load/methods , Young Adult
16.
Viruses ; 13(12)2021 12 18.
Article in English | MEDLINE | ID: mdl-34960813

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.


Subject(s)
SARS-CoV-2/genetics , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , Genotype , Humans , Mutation , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/classification , Sequence Analysis, DNA/methods
17.
Pathogens ; 10(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34959537

ABSTRACT

Hepatitis E virus (HEV) is the first cause of viral hepatitis in the world. While the water-borne HEV genotypes 1 and 2 are found in developing countries, HEV genotypes 3 and 4 are endemic in developed countries due to the existence of animal reservoirs, especially swine. An HEV infection produces many extra-hepatic manifestations in addition to liver symptoms, especially neurological disorders. The most common are neuralgic amyotrophy or Parsonage-Turner syndrome, Guillain-Barré syndrome, myelitis, and encephalitis. The pathophysiology of the neurological injuries due to HEV remains uncertain. The immune response to the virus probably plays a role, but direct virus neurotropism could also contribute to the pathophysiology. This review describes the main neurological manifestations and their possible pathogenic mechanisms.

18.
Vaccines (Basel) ; 9(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34696313

ABSTRACT

Hepatitis E virus (HEV) infection can lead to a variety of neurological disorders. While HEV RNA is known to be present in the central nervous system, HEV quasispecies in serum and cerebrospinal fluid (CSF) have rarely been explored. We studied the virus' quasispecies in the blood and the CSF of five patients at the onset of their neurological symptoms. The samples of three patients suffering from meningitis, neuralgic amyotrophy and acute inflammatory polyradiculoneuropathy were taken at the acute phase of the HEV infection. The samples from the other two patients were taken during the chronic phase (5 years after HEV diagnosis) when they presented with clinical signs of encephalitis. We sequenced at least 20 randomly polyproline regions of the selected virus clones. Phylogenetic analysis of the virus variants in the blood and the CSF revealed no virus compartmentalization for the three acute-phase patients but there was clear evidence of HEV quasispecies compartmentalization in the CSF of the two patients during chronic infection. In conclusion, prolonged infection in the immunocompromised condition can lead to independent virus replication in the liver and the tissues, producing viruses in CSF.

19.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34696330

ABSTRACT

The hepatitis A virus (HAV) is a leading cause of acute viral hepatitis worldwide. It is transmitted mainly by direct contact with patients who have been infected or by ingesting contaminated water or food. The virus is endemic in low-income countries where sanitary and sociodemographic conditions are poor. Paradoxically, improving sanitary conditions in these countries, which reduces the incidence of HAV infections, can lead to more severe disease in susceptible adults. The populations of developed countries are highly susceptible to HAV, and large outbreaks can occur when the virus is spread by globalization and by increased travel and movement of foodstuffs. Most of these outbreaks occur among high-risk groups: travellers, men who have sex with men, people who use substances, and people facing homelessness. Hepatitis A infections can be prevented by vaccination; safe and effective vaccines have been available for decades. Several countries have successfully introduced universal mass vaccination for children, but high-risk groups in high-income countries remain insufficiently protected. The development of HAV antivirals may be important to control HAV outbreaks in developed countries where a universal vaccination programme is not recommended.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis A virus/drug effects , Hepatitis A/epidemiology , Hepatitis A/prevention & control , Disease Outbreaks/prevention & control , Hepatitis A/drug therapy , Homosexuality, Male , Humans , Incidence , Male , Risk Factors , Sexual and Gender Minorities , Travel
20.
Front Med (Lausanne) ; 8: 726363, 2021.
Article in English | MEDLINE | ID: mdl-34540871

ABSTRACT

Background: Hepatitis E Virus (HEV) is one of the most common causes of hepatitis worldwide, and South-Western France is a high HEV seroprevalence area. While most cases of HEV infection are associated with the species Orthohepevirus-A, several studies have reported a few cases of HEV infections due to Orthohepevirus-C (HEV-C) that usually infects rats. Most of these human cases have occurred in immunocompromised patients. We have screened for the presence of HEV-C in our region. Methods and Results: We tested 224 sera, mostly from immunocompromised patients, for HEV-C RNA using an in-house real time RT-PCR. Liver function tests gave elevated results in 63% of patients: mean ALT was 159 IU/L (normal < 40 IU/L). Anti-HEV IgG (49%) and anti-HEV IgM (9.4%) were frequently present but none of the samples tested positive for HEV-C RNA. Conclusion: HEV-C does not circulate in the human population of South-Western France, despite the high seroprevalence of anti-HEV IgG.

SELECTION OF CITATIONS
SEARCH DETAIL
...