Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Nano Lett ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608158

ABSTRACT

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

2.
J Phys Chem Lett ; 15(14): 3721-3727, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38546374

ABSTRACT

The understanding of the interfacial properties in perovskite devices under irradiation is crucial for their engineering. In this study we show how the electronic structure of the interface between CsPbBr3 perovskite nanocrystals (PNCs) and Au is affected by irradiation of X-rays, near-infrared (NIR), and ultraviolet (UV) light. The effects of X-ray and light exposure could be differentiated by employing low-dose X-ray photoelectron spectroscopy (XPS). Apart from the common degradation product of metallic lead (Pb0), a new intermediate component (Pbint) was identified in the Pb 4f XPS spectra after exposure to high intensity X-rays or UV light. The Pbint component is determined to be monolayer metallic Pb on-top of the Au substrate from underpotential deposition (UPD) of Pb induced from the breaking of the perovskite structure allowing for migration of Pb2+.

3.
Nano Lett ; 23(22): 10228-10235, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37930320

ABSTRACT

Achieving pure single-photon emission is essential for a range of quantum technologies, from quantum computing to quantum key distribution to quantum metrology. Among solid-state quantum emitters, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have attracted considerable interest due to their structural and optical properties, which make them attractive candidates for single-photon sources (SPSs). However, their practical utilization has been hampered by environment-induced instabilities. In this study, we fabricate and characterize in a systematic manner Zn-treated CsPbBr3 colloidal NCs obtained through Zn2+ ion doping at the Pb-site, demonstrating improved stability under dilution and illumination. The doped NCs exhibit high single-photon purity, reduced blinking on a submillisecond time scale, and stability of the bright state even at excitation powers well above saturation. Our findings highlight the potential of this synthesis approach to optimize the performance of LHP-based SPSs, opening up interesting prospects for their integration into nanophotonic systems for quantum technology applications.

4.
Nano Lett ; 23(18): 8539-8546, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712683

ABSTRACT

Optoelectronic devices rely on conductive layers as electrodes, but they usually introduce optical losses that are detrimental to the device performances. While the use of transparent conductive oxides is established in the visible region, these materials show high losses at longer wavelengths. Here, we demonstrate a photodiode based on a metallic grating acting as an electrode. The grating generates a multiresonant photonic structure over the diode stack and allows strong broadband absorption. The obtained device achieves the highest performances reported so far for a midwave infrared nanocrystal-based detector, with external quantum efficiency above 90%, detectivity of 7 × 1011 Jones at 80 K at 5 µm, and a sub-100 ns time response. Furthermore, we demonstrate that combining different gratings with a single diode stack can generate a bias reconfigurable response and develop new functionalities such as band rejection.

5.
Nanoscale ; 15(35): 14651-14658, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37622447

ABSTRACT

Owing to their bright and tunable luminescence spectra, nanocrystals appear as a unique playground for light source design. Displays and lighting require white light sources that combine several narrow lines. As Kasha's rule prevents the emission of hot carriers, blends of multiple nanocrystal populations are currently the obvious strategy for broad-band source design. However, a few reports suggest that bicolor emission can also be obtained from a single particle even under weak excitation if a careful design of the exciton scattering mechanism sufficiently slows down its relaxation pathways. A key challenge remains to maintain quantum confinement for color tunability in the same structure, while simultaneously achieving a large size to leverage the critical, slower exciton diffusion or relaxation down to the ground state. Herein, we demonstrate that 2D nanoplatelets offer an original opportunity for the design of confined and large heterostructures. We demonstrate that bicolor emission is not limited to green-red pair and show that blue-yellow and purple-green emissions can be obtained from CdSe/CdTe/CdSe core/crown/crown and CdSe/CdS core/crown heterostructures, respectively.

6.
ACS Nano ; 17(13): 12266-12277, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37366625

ABSTRACT

In the semiconducting perovskite materials family, the cesium-lead-chloride compound (CsPbCl3) supports robust excitons characterized by a blue-shifted transition and the largest binding energy, thus presenting a high potential to achieve demanding solid-state room-temperature photonic or quantum devices. Here we study the fundamental emission properties of cubic-shaped colloidal CsPbCl3 nanocrystals (NCs), examining in particular individual NC responses using micro-photoluminescence in order to unveil the exciton fine structure (EFS) features. Within this work, NCs with average dimensions ⟨Lα⟩ ≈ 8 nm (α = x, y, z) are studied with a level of dispersity in their dimensions that allows disentangling the effects of size and shape anisotropy in the analysis. We find that most of the NCs exhibit an optical response under the form of a doublet with crossed polarized peaks and an average inter-bright-state splitting, ΔBB ≈ 1.53 meV, but triplets are also observed though being a minority. The origin of the EFS patterns is discussed in the frame of the electron-hole exchange model by taking into account the dielectric mismatch at the NC interface. The different features (large dispersity in the ΔBB values and occasional occurrence of triplets) are reconciled by incorporating a moderate degree of shape anisotropy, observed in the structural characterization, by preserving the relatively high degree of the NC lattice symmetry. The energy distance between the optically inactive state and the bright manifold, ΔBD, is also extracted from time-resolved photoluminescence measurements (ΔBD ≈ 10.7 meV), in good agreement with our theoretical predictions.

7.
Nanoscale ; 15(21): 9440-9448, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37158270

ABSTRACT

As nanocrystal-based devices gain maturity, a comprehensive understanding of their electronic structure is necessary for further optimization. Most spectroscopic techniques typically examine pristine materials and disregard the coupling of the active material to its actual environment, the influence of an applied electric field, and possible illumination effects. Therefore, it is critical to develop tools that can probe device in situ and operando. Here, we explore photoemission microscopy as a tool to unveil the energy landscape of a HgTe NC-based photodiode. We propose a planar diode stack to facilitate surface-sensitive photoemission measurements. We demonstrate that the method gives direct quantification of the diode's built-in voltage. Furthermore, we discuss how it is affected by particle size and illumination. We show that combining SnO2 and Ag2Te as electron and hole transport layers is better suited for extended-short-wave infrared materials than materials with larger bandgaps. We also identify the effect of photodoping over the SnO2 layer and propose a strategy to overcome it. Given its simplicity, the method appears to be of utmost interest for screening diode design strategies.

8.
J Chem Phys ; 158(9): 094702, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36889960

ABSTRACT

Narrow bandgap nanocrystals (NCs) are now used as infrared light absorbers, making them competitors to epitaxially grown semiconductors. However, these two types of materials could benefit from one another. While bulk materials are more effective in transporting carriers and give a high degree of doping tunability, NCs offer a larger spectral tunability without lattice-matching constraints. Here, we investigate the potential of sensitizing InGaAs in the mid-wave infrared throughout the intraband transition of self-doped HgSe NCs. Our device geometry enables the design of a photodiode remaining mostly unreported for intraband-absorbing NCs. Finally, this strategy allows for more effective cooling and preserves the detectivity above 108 Jones up to 200 K, making it closer to cryo-free operation for mid-infrared NC-based sensors.

9.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984214

ABSTRACT

Nanocrystals' (NCs) band gap can be easily tuned over the infrared range, making them appealing for the design of cost-effective sensors. Though their growth has reached a high level of maturity, their doping remains a poorly controlled parameter, raising the need for post-synthesis tuning strategies. As a result, phototransistor device geometry offers an interesting alternative to photoconductors, allowing carrier density control. Phototransistors based on NCs that target integrated infrared sensing have to (i) be compatible with low-temperature operation, (ii) avoid liquid handling, and (iii) enable large carrier density tuning. These constraints drive the search for innovative gate technologies beyond traditional dielectric or conventional liquid and ion gel electrolytes. Here, we explore lithium-ion glass gating and apply it to channels made of HgTe narrow band gap NCs. We demonstrate that this all-solid gate strategy is compatible with large capacitance up to 2 µF·cm-2 and can be operated over a broad range of temperatures (130-300 K). Finally, we tackle an issue often faced by NC-based phototransistors:their low absorption; from a metallic grating structure, we combined two resonances and achieved high responsivity (10 A·W-1 or an external quantum efficiency of 500%) over a broadband spectral range.

10.
Chem Rev ; 123(7): 3543-3624, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36724544

ABSTRACT

The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.

11.
Nano Lett ; 23(4): 1363-1370, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36692377

ABSTRACT

As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for operando investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.

12.
Nanotechnology ; 34(7)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36347029

ABSTRACT

Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WS1.4Se0.6alloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of thek-space by a constant in-plane vector. This band splitting is a signature of a unidirectional Rashba spin splitting with a related giant Rashba parameter of 2.8 ± 0.7 eV Å. The combination of angle resolved photoemission spectroscopy with piezo force microscopy highlights the link between this giant unidirectional Rashba spin splitting and an in-plane polarization present in the alloy. These peculiar anisotropic properties of the WS1.4Se0.6alloy can be related to local atomic orders induced during the growth process due the different size and electronegativity between S and Se atoms. This distorted crystal structure combined to the observed macroscopic tensile strain, as evidenced by photoluminescence, displays electric dipoles with a strong in-plane component, as shown by piezoelectric microscopy. The interplay between semiconducting properties, in-plane spontaneous polarization and giant out-of-plane Rashba spin-splitting in this 2D material has potential for a wide range of applications in next-generation electronics, piezotronics and spintronics devices.

13.
Nanotechnology ; 34(4)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36252554

ABSTRACT

Nearly localized moiré flat bands in momentum space, arising at particular twist angles, are the key to achieve correlated effects in transition-metal dichalcogenides. Here, we use angle-resolved photoemission spectroscopy (ARPES) to visualize the presence of a flat band near the Fermi level of van der Waals WSe2/MoSe2heterobilayer grown by molecular beam epitaxy. This flat band is localized near the Fermi level and has a width of several hundred meVs. By combining ARPES measurements with density functional theory calculations, we confirm the coexistence of different domains, namely the reference 2H stacking without layer misorientation and regions with arbitrary twist angles. For the 2H-stacked heterobilayer, our ARPES results show strong interlayer hybridization effects, further confirmed by complementary micro- Raman spectroscopy measurements. The spin-splitting of the valence band atKis determined to be 470 meV. The valence band maximum (VBM) position of the heterobilayer is located at the Γ point. The energy difference between the VBM at Γ and theKpoint is of -60 meV, which is a stark difference compared to individual single monolayer WSe2and monolayer WSe2, showing both a VBM atK.

14.
Nano Lett ; 22(21): 8779-8785, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36190814

ABSTRACT

While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.

15.
Nat Commun ; 13(1): 5094, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042249

ABSTRACT

Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha's rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation.

16.
J Phys Chem Lett ; 13(30): 6919-6926, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35867700

ABSTRACT

While HgTe nanocrystals (NCs) in the mid-infrared region have reached a high level of maturity, their far-infrared counterparts remain far less studied, raising the need for an in-depth investigation of the material before efficient device integration can be considered. Here, we explore the effect of temperature and pressure on the structural, spectroscopic, and transport properties of HgTe NCs displaying an intraband absorption at 10 THz. The temperature leads to a very weak modulation of the spectrum as opposed to what was observed for strongly confined HgTe NCs. HgTe NC films present ambipolar conduction with a clear prevalence of electron conduction as confirmed by transistor and thermoelectric measurements. Under the application of pressure, the material undergoes phase transitions from the zinc blende to cinnabar phase and later to the rock salt phase which we reveal using joint X-ray diffraction and infrared spectroscopy measurements. We discuss how the pressure existence domain of each phase is affected by the particle size.

17.
Soft Matter ; 18(25): 4792-4802, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35708225

ABSTRACT

New collective optical properties have emerged recently from organized and oriented arrays of closely packed semiconducting and metallic nanoparticles (NPs). However, it is still challenging to obtain NP assemblies which are similar everywhere on a given sample and, most importantly, share a unique common orientation that would guarantee a unique behavior everywhere on the sample. In this context, by combining optical microscopy, fluorescence microscopy and synchrotron-based grazing incidence X-ray scattering (GISAXS) of assemblies of gold nanospheres and of fluorescent nanorods, we study the interactions between NPs and liquid crystal smectic topological defects that can ultimately lead to unique NP orientations. We demonstrate that arrays of one-dimensional - 1D (dislocations) and two-dimensional - 2D (grain boundaries) topological defects oriented along one single direction confine and organize NPs in closely packed networks but also orient both single nanorods and NP networks along the same direction. Through the comparison between smectic films associated with different kinds of topological defects, we highlight that the coupling between the NP ligands and the smectic layers below the grain boundaries may be necessary to allow for fixed NP orientation. This is in contrast with 1D defects, where the induced orientation of the NPs is intrinsically induced by the confinement independently of the ligand nature. We thus succeeded in achieving the fixed polarization of assemblies of single photon emitters in defects. For gold nanospheres confined in grain boundaries, a strict orientation of hexagonal networks has been obtained with the 〈10〉 direction strictly parallel to the defects. With such closely packed and oriented NPs, new collective properties are now foreseen.

18.
Nanoscale ; 14(26): 9359-9368, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35726871

ABSTRACT

HgTe nanocrystals, thanks to quantum confinement, present a broadly tunable band gap all over the infrared spectral range. In addition, significant efforts have been dedicated to the design of infrared sensors with an absorbing layer made of nanocrystals. However, most efforts have been focused on single pixel sensors. Nanocrystals offer an appealing alternative to epitaxially grown semiconductors for infrared imaging by reducing the material growth cost and easing the coupling to the readout circuit. Here we propose a strategy to design an infrared focal plane array from a single fabrication step. The focal plane array (FPA) relies on a specifically designed readout circuit enabling in plane electric field application and operation in photoconductive mode. We demonstrate a VGA format focal plane array with a 15 µm pixel pitch presenting an external quantum efficiency of 4-5% (15% internal quantum efficiency) for a cut-off around 1.8 µm and operation using Peltier cooling only. The FPA is compatible with 200 fps imaging full frame and imaging up to 340 fps is demonstrated by driving a reduced area of the FPA. In the last part of the paper, we discuss the cost of such sensors and show that the latter is only driven by labor costs while we estimate the cost of the NC film to be in the 10-20 € range.

19.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407246

ABSTRACT

Germanane is a two-dimensional material consisting of stacks of atomically thin germanium sheets. It's easy and low-cost synthesis holds promise for the development of atomic-scale devices. However, to become an electronic-grade material, high-quality layered crystals with good chemical purity and stability are needed. To this end, we studied the electrical transport of annealed methyl-terminated germanane microcrystallites in both high vacuum and ultrahigh vacuum. Scanning electron microscopy of crystallites revealed two types of behavior which arise from the difference in the crystallite chemistry. While some crystallites are hydrated and oxidized, preventing the formation of good electrical contact, the four-point resistance of oxygen-free crystallites was measured with multiple tips scanning tunneling microscopy, yielding a bulk transport with resistivity smaller than 1 Ω·cm. When normalized by the crystallite thickness, the resistance compares well with the resistance of hydrogen-passivated germanane flakes found in the literature. Along with the high purity of the crystallites, a thermal stability of the resistance at 280 °C makes methyl-terminated germanane suitable for complementary metal oxide semiconductor back-end-of-line processes.

20.
Nanoscale ; 14(15): 5859-5868, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35362486

ABSTRACT

Two-dimensional materials (2D) arranged in hybrid van der Waals (vdW) heterostructures provide a route toward the assembly of 2D and conventional III-V semiconductors. Here, we report the structural and electronic properties of single layer WSe2 grown by molecular beam epitaxy on Se-terminated GaAs(111)B. Reflection high-energy electron diffraction images exhibit sharp streaky features indicative of a high-quality WSe2 layer produced via vdW epitaxy. This is confirmed by in-plane X-ray diffraction. The single layer of WSe2 and the absence of interdiffusion at the interface are confirmed by high resolution X-ray photoemission spectroscopy and high-resolution transmission microscopy. Angle-resolved photoemission investigation revealed a well-defined WSe2 band dispersion and a high p-doping coming from the charge transfer between the WSe2 monolayer and the Se-terminated GaAs substrate. By comparing our results with local and hybrid functionals theoretical calculation, we find that the top of the valence band of the experimental heterostructure is close to the calculations for free standing single layer WSe2. Our experiments demonstrate that the proximity of the Se-terminated GaAs substrate can significantly tune the electronic properties of WSe2. The valence band maximum (VBM, located at the K point of the Brillouin zone) presents an upshift of about 0.56 eV toward the Fermi level with respect to the VBM of the WSe2 on graphene layer, which is indicative of high p-type doping and a key feature for applications in nanoelectronics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...