Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600054

ABSTRACT

Mycotoxin contamination poses substantial health risks to humans and animals. In this study, the two laccases PpLac1 and AoLac2 from Pleurotus pulmonarius and Aspergillus oryzae were selected and heterologously expressed in Pichia pastoris in a food-grade manner to detoxify aflatoxin B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). Both laccases exhibited degradation activity toward these three mycotoxins, while the efficiency of these for DON was relatively low. Therefore, molecular docking between these laccases and DON was conducted to analyze their potential interaction mechanisms. Furthermore, the degradation conditions of AFB1 and ZEN by the two laccases were optimized, and the optimal degradation rates for AFB1 and ZEN by PpLac1 reached 78.51 and 78.90%, while those for AFB1 and ZEN by AoLac2 reached 72.27 and 80.60%, respectively. The laccases PpLac1 and AoLac2 successfully transformed AFB1 and ZEN into the compounds AFQ1 and 15-OH-ZEN, which were 90 and 98% less toxic than the original compounds, respectively. Moreover, the culture supernatants demonstrated effective mycotoxin degradation results for AFB1 and ZEN in contaminated feed samples. The residual levels of AFB1 and ZEN in all samples ranged from 6.61 to 8.72 µg/kg and 3.44 to 98.15 µg/kg, respectively, and these levels were below the limit set by the European Union standards. All of the results in this study indicated that the two laccases have excellent application potential in the feed industry.

2.
JACS Au ; 4(4): 1654-1663, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665664

ABSTRACT

Unspecific peroxygenases (UPOs), secreted by fungi, demonstrate versatility in catalyzing challenging selective oxyfunctionalizations. However, the number of peroxygenases and corresponding variants with tailored selectivity for a broader substrate scope is still limited due to the lack of efficient engineering strategies. In this study, a new unspecific peroxygenase from Coprinopsis marcescibilis (CmaUPO) is identified and characterized. To enhance or reverse the enantioselectivity of wildtype (WT) CmaUPO catalyzed asymmetric hydroxylation of ethylbenzene, CmaUPO was engineered using an efficient superfolder-green-fluorescent-protein (sfGFP)-mediated secretion system in Escherichia coli. Iterative saturation mutagenesis (ISM) was used to target the residual sites lining the substrate tunnel, resulting in two variants: T125A/A129G and T125A/A129V/A247H/T244A/F243G. The two variants greatly improved the enantioselectivities [21% ee (R) for WT], generating the (R)-1-phenylethanol or (S)-1-phenylethanol as the main product with 99% ee (R) and 84% ee (S), respectively. The sfGFP-mediated secretion system in E. coli demonstrates applicability for different UPOs (AaeUPO, CciUPO, and PabUPO-I). Therefore, this developed system provides a robust platform for heterologous expression and enzyme engineering of UPOs, indicating great potential for their sustainable and efficient applications in various chemical transformations.

3.
ACS Synth Biol ; 13(4): 1332-1342, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38563122

ABSTRACT

Gastrodin, 4-hydroxybenzyl alcohol-4-O-ß-D-glucopyranoside, has been widely used in the treatment of neurogenic and cardiovascular diseases. Currently, gastrodin biosynthesis is being achieved in model microorganisms. However, the production levels are insufficient for industrial applications. In this study, we successfully engineered a Yarrowia lipolytica strain to overproduce gastrodin through metabolic engineering. Initially, the engineered strain expressing the heterologous gastrodin biosynthetic pathway, which comprises chorismate lyase, carboxylic acid reductase, phosphopantetheinyl transferase, endogenous alcohol dehydrogenases, and a UDP-glucosyltransferase, produced 1.05 g/L gastrodin from glucose in a shaking flask. Then, the production was further enhanced to 6.68 g/L with a productivity of 2.23 g/L/day by overexpressing the key node DAHP synthases of the shikimate pathway and alleviating the native tryptophan and phenylalanine biosynthetic pathways. Finally, the best strain, Gd07, produced 13.22 g/L gastrodin in a 5 L fermenter. This represents the highest reported production of gastrodin in an engineered microorganism to date, marking the first successful de novo production of gastrodin using Y. lipolytica.


Subject(s)
Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Metabolic Engineering , Glucosides/metabolism , Benzyl Alcohols/metabolism
4.
Bioresour Bioprocess ; 11(1): 33, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38647936

ABSTRACT

Unspecific peroxygenases (UPOs) are glycosylated enzymes that provide an efficient method for oxyfunctionalizing a variety of substrates using only hydrogen peroxide (H2O2) as the oxygen donor. However, their poor heterologous expression has hindered their practical application. Here, a novel UPO from Marasmius fiardii PR910 (MfiUPO) was identified and heterologously expressed in Pichia pastoris. By employing a two-copy expression cassette, the protein titer reached 1.18 g L-1 in a 5 L bioreactor, marking the highest record. The glycoprotein rMfiUPO exhibited a smeared band in the 40 to 55 kDa range and demonstrated hydroxylation, epoxidation and alcohol oxidation. Moreover, the peroxidative activity was enhanced by 150% after exposure to 50% (v/v) acetone for 40 h. A semi-preparative production of 4-OH-ß-ionone on a 100 mL scale resulted in a 54.2% isolated yield with 95% purity. With its high expression level, rMfiUPO is a promising candidate as an excellent parental template for enhancing desirable traits such as increased stability and selectivity through directed evolution, thereby meeting the necessary criteria for practical application.

5.
ChemSusChem ; 17(6): e202400204, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38369946

ABSTRACT

Invited for this issue's cover is the group of Huilei Yu at the East China University of Science and Technology. The image shows a sustainable biosynthesis route to nylon monomers from bio-based substrate α, ω-dicarboxylic acids. The Research Article itself is available at 10.1002/cssc.202301477.


Subject(s)
Diamines , Fatty Acids , Amino Acids , China
6.
ChemSusChem ; 17(6): e202301477, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38117609

ABSTRACT

Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.


Subject(s)
Amino Acids , Diamines , Dicarboxylic Acids , Fatty Acids
7.
J Agric Food Chem ; 71(51): 20772-20781, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37963219

ABSTRACT

l-Phenyllactic acid (l-PLA) is a small molecular organic acid that exhibits a powerful capacity for inhibition against foodborne pathogens. In this work, we developed a new cost-effective and environmentally friendly process for the biosynthesis of l-PLA. This strategy designed a novel whole-cell biotransformation system employing two heterologous enzymes, namely, phenylalanine dehydrogenase (PheDH) and l-hydroxyisocaproate dehydrogenase (l-HicDH). The novelty of this strategy lies in the first-time utilization of these two enzymes, which not only enables cascade catalysis for the production of l-PLA but also facilitates the regeneration of the coenzymes (NAD+/NADH) using only two enzymes rather than introducing more heterologous enzymes to the system. Consequently, this strategy can effectively simplify the biosynthesis process of l-PLA and minimize production costs. The initial l-PLA yield using this process achieved 2.53 ± 0.07 g/L. Furthermore, through meticulous optimization of the parameters for inducible enzyme expression and l-PLA biosynthesis, the l-PLA yield was successfully increased to 4.68 ± 0.04 g/L with a yield rate of 64.54 ± 0.29%. Moreover, this novel strategy is versatile in the biosynthesis of other organic acids, which can be achieved by easily modulating the combinations of substrates and enzymes.


Subject(s)
Coenzymes , Regeneration , Biotransformation , Polyesters
8.
Methods Enzymol ; 693: 191-229, 2023.
Article in English | MEDLINE | ID: mdl-37977731

ABSTRACT

Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.


Subject(s)
Cytochrome P-450 Enzyme System , Protein Engineering , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Protein Engineering/methods , Steroids , Catalysis
9.
Appl Environ Microbiol ; 89(3): e0196322, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36853033

ABSTRACT

In this study, a new cytochrome P450 enzyme, namely, CYP68J5_Fusarium graminearum (CYP68J5_fg), was identified from Fusarium graminearum via a combination of transcriptome sequencing and heterologous expression in Saccharomyces cerevisiae. The biotransformation of progesterone by whole-cells of S. cerevisiae expressing CYP68J5_fg revealed that the CYP68J5_fg possessed steroidal 12ß- and 15α-hydroxylase activities. To the best of our knowledge, this is the first time that a fungal P450 enzyme with 12ß-hydroxylase activity has been identified. This advance offers opportunities to boost the efficiency and selectivity of the CYP68J5_fg hydroxylating system and thus shows great potential for further applications of this enzyme for the synthesis of steroid drugs. IMPORTANCE Regioselective and stereoselective hydroxylation is of vital importance in the functionalization of steroids, which remains challenging in organic synthesis. In particular, the C12-hydroxy steroids play a significant role in the synthesis of many important steroidal drugs. In this study, a novel fungal P450 enzyme with 12ß-hydroxylation activity was identified, and it shows different substrate specificity and regioselectivity, compared to the bacterial and fungal steroidal hydroxylases that are known to date. This lays the foundation for the creation of effective biocatalysts for the process of 12ß-hydroxylation, although further understanding of the molecular structural basis of this fungal P450 is needed to facilitate the engineering of this enzyme for industrial applications.


Subject(s)
Cytochrome P-450 Enzyme System , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Hydroxylation , Cytochrome P-450 Enzyme System/metabolism , Steroids/metabolism
10.
Angew Chem Int Ed Engl ; 62(16): e202215935, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36840725

ABSTRACT

Aliphatic α,ω-diamines (DAs) are important monomer precursors that are industrially produced by energy-intensive, multistage chemical reactions that are harmful to the environment. Therefore, the development of sustainable green DA synthetic routes is highly desired. Herein, we report an efficient one-pot in vivo biocatalytic cascade for the transformation of cycloalkanes into DAs with the aid of advanced techniques, including the RetroBioCat tool for biocatalytic route design, enzyme mining for finding appropriate enzymes and microbial consortia construction for efficient pathway assembly. As a result, DAs were successfully produced by the designed microbial consortia-based biocatalytic system. In particular, the highest biosynthesis productivity record of 1,6-hexanediamine was achieved when using either cyclohexanol or cyclohexane as a substrate. Thus, the developed biocatalytic process provides a promising alternative to the dominant industrial process for manufacturing DAs.


Subject(s)
Cycloparaffins , Cycloparaffins/metabolism , Catalysis , Biocatalysis , Diamines
11.
Bioresour Bioprocess ; 10(1): 39, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-38647640

ABSTRACT

Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.

12.
J Agric Food Chem ; 70(34): 10543-10551, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35997264

ABSTRACT

Artificial biorefinery of oleic acid into 1,10-decanedioic acid represents a revolutionizing route to the sustainable production of chemically difficult-to-make bifunctional chemicals. However, the carbon atom economy is extremely low (56%) due to the formation of unifunctional n-octanol. Here, we report a panel of recombinant Escherichia coli modules for diverse bifunctionalization, where the desired genetic parts are well distributed into different modules that can be flexibly combined in a plug-and-play manner. The designed ω-functionalizing modules could achieve ω-hydroxylation, consecutive ω-oxidation, or ω-amination of n-octanoic acid. By integrating these advanced modules with the reported oleic acid-cleaving modules, high-value C8 and C10 products, including ω-hydroxy acid, ω-amino acid, and α,ω-dicarboxylic acid, were produced with 100% carbon atom economy. These ω-functionalizing modules enabled the complete use of all of the carbon atoms from oleic acid (released from plant oil) for the green synthesis of structurally diverse bifunctional chemicals.


Subject(s)
Escherichia coli , Oleic Acid , 1-Octanol , Carbon , Dicarboxylic Acids/chemistry , Escherichia coli/genetics
13.
Methods Mol Biol ; 2461: 165-174, 2022.
Article in English | MEDLINE | ID: mdl-35727450

ABSTRACT

This study presents an in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants or site-saturation mutagenesis libraries in a PCR-independent manner. The plasmid DNA is double digested with Cas9 bearing specific single guide RNAs to remove the target nucleotides. Next, T5 exonuclease excises both 5'-ends of the linearized plasmid to generate homologous regions of approximately 15 nt. Subsequently, a short dsDNA of approximately 30-50 bp containing the desired mutation cyclizes the plasmid through base pairing and introduces the mutation into the plasmid. The gaps are repaired in Escherichia coli host cells after transformation. This method is highly efficient and accurate. Both single and multiple site-directed mutagenesis can be successfully performed, especially to large sized plasmids. This method demonstrates the great potential for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Escherichia coli/genetics , Mutagenesis , Mutagenesis, Site-Directed , Plasmids/genetics , Polymerase Chain Reaction
14.
Chembiochem ; 23(9): e202200063, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35257464

ABSTRACT

The P450-mediated terminal hydroxylation of non-activated C-H bonds is a chemically challenging reaction. CYP153A7 monooxygenase, discovered in Sphingomonas sp. HXN200, belongs to the CYP153A subfamily and shows a pronounced terminal selectivity. Herein, we report the significantly improved terminal hydroxylation activity of CYP153A7 by redesign of the substrate binding pocket based on molecular docking of CYP153A7-C8:0 and sequence alignments. Some of the resultant single mutants were advantageous over the wild-type enzyme with higher reaction rates, achieving a complete conversion of n-octanoic acid (C8:0, 1 mM) in a shorter time period. Especially, a single-mutation variant, D258E, showed 3.8-fold higher catalytic efficiency than the wild type toward the terminal hydroxylation of medium-chain fatty acid C8:0 to the high value-added product 8-hydroxyoctanoic acid.


Subject(s)
Cytochrome P-450 Enzyme System , Fatty Acids , Catalytic Domain , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/chemistry , Hydroxylation , Molecular Docking Simulation , Substrate Specificity
15.
Theranostics ; 12(3): 1132-1147, 2022.
Article in English | MEDLINE | ID: mdl-35154478

ABSTRACT

Rationale: Employing in situ bioorthogonal catalysis within subcellular organelles, such as lysosomes, remains a challenge. Lysosomal membranes pose an intracellular barrier for drug sequestration, thereby greatly limiting drug accumulation and concentrations at intended targets. Here, we provide a proof-of-concept report of a nanozyme-based strategy that mediates in situ bioorthogonal uncaging reactions within lysosomes, followed by lysosomal escape and the release of uncaged drugs into the cytoplasm. Methods: A model system composed of a protein-based nanozyme platform (based on the transition metals Co, Fe, Mn, Rh, Ir, Pt, Au, Ru and Pd) and caged compound fluorophores was designed to screen for nanozyme/protecting group pairings. The optimized nanozyme/protecting group pairing was then selected for utilization in the design of anti-cancer pro-drugs and drug delivery systems. Results: Our screening system identified Pd nanozymes that mimic mutant P450BM3 activity and specifically cleave propargylic ether groups. We found that the intrinsic peroxidase-like activity of Pd nanozymes induced the production of free radicals under acid conditions, resulting in lysosomal membrane leakage of uncaged molecules into the cytoplasm. Using a multienzyme synergistic approach, our Pd nanozymes achieved in situ bioorthogonal catalysis and nanozyme-mediated lysosomal membrane leakage, which were successfully applied to the design of model pro-drugs for anti-cancer therapy. The extension of our nanozyme system to the construction of a liposome-based "all-in-one" delivery system offers promise for realizing efficacious in vivo tumor-targeted therapies. Conclusions: This strategy shows a promising new direction by utilizing nanotechnology for drug development through in situ catalyzing bioorthogonal chemistry within specific subcellular organelles.


Subject(s)
Neoplasms , Prodrugs , Catalysis , Humans , Lysosomes
16.
iScience ; 24(12): 103401, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34841233

ABSTRACT

A microbial electrochemical system could potentially be applied as a biosynthesis platform by extracting wastewater energy while converting it to value-added chemicals. However, the unfavorable thermodynamics and sluggish kinetics of in vivo whole-cell cathodic catalysis largely limit product diversity and value. Herein, we convert the in vivo cathodic reaction to in vitro enzymatic catalysis and develop a microbe-enzyme hybrid bioelectrochemical system (BES), where microbes release the electricity from wastewater (anode) to power enzymatic catalysis (cathode). Three representative examples for the synthesis of pharmaceutically relevant compounds, including halofunctionalized oleic acid based on a cascade reaction, (4-chlorophenyl)-(pyridin-2-yl)-methanol based on electrochemical cofactor regeneration, and l-3,4-dihydroxyphenylalanine based on electrochemical reduction, were demonstrated. According to the techno-economic analysis, this system could deliver high system profit, opening an avenue to a potentially viable wastewater-to-profit process while shedding scientific light on hybrid BES mechanisms toward a sustainable reuse of wastewater.

17.
BMC Biotechnol ; 21(1): 55, 2021 09 25.
Article in English | MEDLINE | ID: mdl-34563172

ABSTRACT

BACKGROUND: The unnatural amino acid, L-2-aminobutyric acid (L-ABA) is an essential chiral building block for various pharmaceutical drugs, such as the antiepileptic drug levetiracetam and the antituberculosis drug ethambutol. The present study aims at obtaining variants of ω-transaminase from Ochrobactrum anthropi (OATA) with high catalytic activity to α-ketobutyric acid through protein engineering. RESULTS: Based on the docking model using α-ketobutyric acid as the ligand, 6 amino acid residues, consisting of Y20, L57, W58, G229, A230 and M419, were chosen for saturation mutagenesis. The results indicated that L57C, M419I, and A230S substitutions demonstrated the highest elevation of enzymatic activity among 114 variants. Subsequently, double substitutions combining L57C and M419I caused a further increase of the catalytic efficiency to 3.2-fold. This variant was applied for threonine deaminase/OATA coupled reaction in a 50-mL reaction system with 300 mM L-threonine as the substrate. The reaction was finished in 12 h and the conversion efficiency of L-threonine into L-ABA was 94%. The purity of L-ABA is 75%, > 99% ee. The yield of L-ABA was 1.15 g. CONCLUSION: This study provides a basis for further engineering of ω-transaminase for producing chiral amines from keto acids substrates.


Subject(s)
Ochrobactrum anthropi , Transaminases , Aminobutyrates , Catalytic Domain , Ochrobactrum anthropi/genetics , Ochrobactrum anthropi/metabolism , Transaminases/genetics , Transaminases/metabolism
18.
Front Chem ; 9: 649000, 2021.
Article in English | MEDLINE | ID: mdl-33681151

ABSTRACT

Cytochrome P450 enzyme CYP109B1 is a versatile biocatalyst exhibiting hydroxylation activities toward various substrates. However, the regio- and stereoselective steroid hydroxylation by CYP109B1 is far less explored. In this study, the oxidizing activity of CYP109B1 is reconstituted by coupling redox pairs from different sources, or by fusing it to the reductase domain of two self-sufficient P450 enzymes P450RhF and P450BM3 to generate the fused enzyme. The recombinant Escherichia coli expressing necessary proteins are individually constructed and compared in steroid hydroxylation. The ferredoxin reductase (Fdr_0978) and ferredoxin (Fdx_1499) from Synechococcus elongates is found to be the best redox pair for CYP109B1, which gives above 99% conversion with 73% 15ß selectivity for testosterone. By contrast, the rest ones and the fused enzymes show much less or negligible activity. With the aid of redox pair of Fdr_0978/Fdx_1499, CYP109B1 is used for hydroxylating different steroids. The results show that CYP109B1 displayed good to excellent activity and selectivity toward four testosterone derivatives, giving all 15ß-hydroxylated steroids as main products except for 9 (10)-dehydronandrolone, for which the selectivity is shifted to 16ß. While for substrates bearing bulky substitutions at C17 position, the activity is essentially lost. Finally, the origin of activity and selectivity for CYP109B1 catalyzed steroid hydroxylation is revealed by computational analysis, thus providing theoretical basis for directed evolution to further improve its catalytic properties.

19.
Nat Commun ; 12(1): 1621, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712579

ABSTRACT

Multidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and ß-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Molecular Dynamics Simulation , Mutation , Catalysis , Catalytic Domain/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Kinetics , Protein Binding , Protein Structure, Secondary , Substrate Specificity
20.
Biosens Bioelectron ; 177: 112932, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33429204

ABSTRACT

In the present study, we upgraded Pyrococcus furiosus Argonaute (PfAgo) mediated nucleic acid detection method and established a highly sensitive and accurate molecular diagnosis platform for the large-scale screening of COVID-19 infection. Briefly, RT-PCR was performed with the viral RNA extracted from nasopharyngeal or oropharyngeal swabs as template to amplify conserved regions in the viral genome. Next, PfAgo, guide DNAs and molecular beacons in appropriate buffer were added to the PCR products, followed by incubating at 95 °C for 20-30 min. Subsequently, the fluorescence signal was detected. This method was named as SARS-CoV-2 PAND. The whole procedure is accomplished in approximately an hour with the using time of the Real-time fluorescence quantitative PCR instrument shortened from >1 h to only 3-5 min per batch in comparison with RT-qPCR, hence the shortage of the expensive Real-time PCR instrument is alleviated. Moreover, this platform was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The diagnostic results of clinic samples with SARS-CoV-2 PAND displayed 100% consistence with RT-qPCR test.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Archaeal Proteins/genetics , Argonaute Proteins/genetics , Biosensing Techniques/methods , COVID-19/virology , Humans , Limit of Detection , Nasopharynx/virology , Point Mutation , Pyrococcus furiosus/genetics , RNA, Viral/genetics , Recombinant Proteins/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...