Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
PLoS One ; 19(5): e0303372, 2024.
Article in English | MEDLINE | ID: mdl-38739588

ABSTRACT

OBJECTIVES: Elastic band resistance training in elderly individuals can improve physical fitness and promote mental health in addition to other benefits. This systematic review aimed to review, summarize, and evaluate quantitative, qualitative, and mixed methodological studies on the use of elastic band resistance training in elderly individuals, and to investigate the influence of elastic band resistance training on the physical and mental health of elderly individuals, as well as their preferences and obstacles in training. METHODS: A convergent separation approach was used to synthesize and integrate the results, specifically the mixed systematic review approach recommended by the Joanna Briggs Institute. The extensive search strategy included electronic database searches in the Cochrane Library, PubMed, Embase, Web of Science, Google Scholar, MEDLINE, and CINAHL. The researchers rigorously screened the literature, extracted and analyzed the data, and evaluated the quality of the included studies using the Mixed Methods Appraisal Tool (MMAT). RESULTS: Twenty-eight studies were included, of which 25 were quantitative studies, 2 were qualitative studies, and 1 was a mixed-methods study. A total of 1,697 subjects were investigated across all studies. Quantitative evidence supports the notion that elastic band resistance training can improve upper and lower limb flexibility, endurance, upper strength, physical balance, and cardiopulmonary function and enhance the mental health of elderly individuals. Participants in the qualitative study reported some preferences and obstacles with band resistance training, but most participants reported physical benefits. CONCLUSIONS: Despite the heterogeneity between studies, this review is the first systematic review to comprehensively evaluate the effectiveness of elastic band resistance training in older adults. It not only shows the influence of elastic band resistance training on the physical and mental health of the elderly, but also emphasizes the preference and obstacles of elderly individuals face.


Subject(s)
Mental Health , Resistance Training , Humans , Resistance Training/methods , Aged , Physical Fitness/physiology , Physical Fitness/psychology , Muscle Strength/physiology , Male
2.
Medicine (Baltimore) ; 102(47): e36287, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38013316

ABSTRACT

Rheumatoid arthritis is an autoimmune disease characterized by chronic polyarticular pain, for which no cure currently exists. In Chinese medicine, rheumatoid arthritis (RA) is believed to be caused by phlegm and blood stagnation. Shentong Zhuyu decoction can be used to treat RA, as it promotes blood circulation, resolves blood stasis, and relieves pain. In our study, we used network pharmacology and computer-aided drug design to evaluate the components, active compounds, and targets of Shentong Zhuyu decoction (STZY). Our results suggest that STZY contains active compounds such as quercetin, luteolin, and formononetin that regulate immune network targets. RA associated genes are enriched in pathways including those associated with nuclear factor kappa B, phosphatidylinositol-3-kinase/AKT, and hypoxia inducible factor 1 signaling. The main active compounds in STZY (quercetin and luteolin) were derived from Achyranthis Bidentatae Radix, Carthami Flos, licorice, Cyperi Rhizoma, and Myrrha and targeted the pro-inflammatory cytokines interleukin 2, interleukin 1 alpha, interleukin 1 beta, and interleukin 6. In addition, the compounds quercetin, luteolin, and formononetin in these herbs can target the anti-inflammatory cytokines interleukin 4 and interleukin 10. Our results suggest that STZY can balance the immune network, promote an anti-inflammatory environment, and reduce the clinical symptoms of RA. Based on the close relationship between inflammatory response and osteoclast formation, we hypothesized that STZY may inhibit inflammation and alleviate bone destruction in RA. Our findings indicate that STZY can treat RA through multiple components, targets, and pathways. This study may provide a reference for the clinical application of STZY in RA treatment.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional/methods , Systems Biology , Luteolin/therapeutic use , Quercetin/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pain/drug therapy , Drug Design
3.
Medicine (Baltimore) ; 102(44): e35872, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37932995

ABSTRACT

Kinesiophobia is an excessive, irrational, debilitating fear of physical movement and activity caused by a sense of vulnerability to pain or re-injury, which can have a direct impact on physical functioning and mental well-being of patients. This paper aims to provide reliable support for future in-depth research on kinesiophobia through scientometrics and historical review. Studies on kinesiophobia published from 2002 to 2022 were retrieved from the Web of Science Core Collection. CiteSpace and VOSviewer were used to conduct bibliometric analysis of the included studies and map knowledge domains. Keywords were manually clustered, and the results were analyzed and summarized in combination with a literature review. A total of 4157 original research articles and reviews were included. Research on kinesiophobia is developing steadily and has received more attention from scholars in recent years. There are regional differences in the distribution of research. Chronic pain is the focus of research in this field. A multidisciplinary model of pain neuroscience education combined with physical therapy based on cognitive-behavioral therapy and the introduction and development of virtual reality may be the frontier of research. There is a large space for the study of kinesiophobia. In the future, to improve regional academic exchanges and cooperation, more attention should be given to the clinical applicability and translation of scientific work, which will be conducive to improving the quality of life and physical and mental health outcomes of kinesiophobia patients.


Subject(s)
Chronic Pain , Cognitive Behavioral Therapy , Humans , Kinesiophobia , Quality of Life , Bibliometrics
4.
Org Biomol Chem ; 21(45): 9029-9036, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37930431

ABSTRACT

By expressing a multimodular NRPS gene sefA from Serratia fonticola DSM 4576 in E. coli, four new serrawettin W2 analogues, namely sefopeptides A-D (1-4), were isolated and structurally characterized and their biosynthesis was proposed. A bioactivity assay showed that sefopeptide C (3) exhibits moderate cytotoxic activity against acute promyelocytic leukemia NB4 cells.


Subject(s)
Escherichia coli , Leukemia, Promyelocytic, Acute , Humans , Escherichia coli/genetics , Serratia/genetics , Peptides, Cyclic/chemistry
6.
J Virol ; 97(10): e0074723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37712706

ABSTRACT

IMPORTANCE: Respiratory syncytial virus (RSV) matrix (M) protein is indispensable for virion assembly and release. It is localized to the nucleus during early infection to perturb host transcription. However, the function of RSV M protein in other cellular activities remains poorly understood. In this study, several interferon response-associated host factors, including RACK1, were identified by proteomic analysis as RSV M interactors. Knockdown of RACK1 attenuates RSV-restricted IFN signaling leading to enhanced host defense against RSV infection, unraveling a role of M protein in antagonizing IFN response via association with RACK1. Our study uncovers a previously unrecognized mechanism of immune evasion by RSV M protein and identifies RACK1 as a novel host factor recruited by RSV, highlighting RACK1 as a potential new target for RSV therapeutics development.


Subject(s)
Receptors for Activated C Kinase , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Viral Matrix Proteins , Humans , Interferons , Neoplasm Proteins/genetics , Proteins , Proteomics , Receptors for Activated C Kinase/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Viral Matrix Proteins/metabolism
7.
Medicine (Baltimore) ; 102(35): e34717, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37657045

ABSTRACT

NUMB has been initially identified as a critical cell fate determinant that modulates cell differentiation via asymmetrical partitioning during mitosis, including tumor cells. However, it remains absent that a systematic assessment of the mechanisms underlying NUMB and its homologous protein NUMBLIKE (NUMBL) involvement in cancer. This study aimed to investigate the prognostic significance for NUMB and NUMBL in pan-cancer. In this study, using the online databases TIMER2.0, gene expression profiling interactive analysis, cBioPortal, the University of ALabama at Birmingham CANcer data analysis Portal, SearchTool for the Retrieval of Interacting Genes/Proteins, and R software, we focused on the relevance between NUMB/NUMBL and oncogenesis, progression, mutation, phosphorylation, function and prognosis. This study demonstrated that abnormal expression of NUMB and NUMBL were found to be significantly associated with clinicopathologic stages and the prognosis of survival. Besides, genetic alternations of NUMB and NUMBL focused on uterine corpus endometrial carcinoma, and higher genetic mutations of NUMBL were correlated with more prolonged overall survival and disease-free survival in different cancers. Moreover, S438 locus of NUMB peptide fragment was frequently phosphorylated in 4 cancer types and relevant to its phosphorylation sites. Furthermore, endocytosis processing and neurogenesis regulation were involved in the functional mechanisms of NUMB and NUMBL separately. Additionally, the pathway enrichment suggested that NUMB was implicated in Hippo, Neurotrophin, Thyroid hormone, and FoxO pathways, while MAPK, Hippo, Rap1, mTOR, and Notch pathways were related to the functions of NUMBL. This study highlights the predictive roles of NUMB and NUMBL in pan-cancer, suggesting NUMB and NUMBL might be served as potential biomarkers for diagnosis and prognosis in various malignant tumors.


Subject(s)
Carcinogenesis , Carcinoma, Endometrioid , Humans , Female , Prognosis , Cell Differentiation , Cell Nucleus Division , Intracellular Signaling Peptides and Proteins
8.
Cell Death Discov ; 9(1): 279, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528096

ABSTRACT

To date, there is no effective therapy for pathological cardiac hypertrophy, which can ultimately lead to heart failure. Bellidifolin (BEL) is an active xanthone component of Gentianella acuta (G. acuta) with a protective function for the heart. However, the role and mechanism of BEL action in cardiac hypertrophy remain unknown. In this study, the mouse model of cardiac hypertrophy was established by isoprenaline (ISO) induction with or without BEL treatment. The results showed that BEL alleviated cardiac dysfunction and pathological changes induced by ISO in the mice. The expression of cardiac hypertrophy marker genes, including ANP, BNP, and ß-MHC, were inhibited by BEL both in mice and in H9C2 cells. Furthermore, BEL repressed the epigenetic regulator bromodomain-containing protein 4 (BRD4) to reduce the ISO-induced acetylation of H3K122 and phosphorylation of RNA Pol II. The Nox4/ROS/ADAM17 signalling pathway was also inhibited by BEL in a BRD4 dependent manner. Thus, BEL alleviated cardiac hypertrophy and cardiac dysfunction via the BRD4/Nox4/ROS axes during ISO-induced cardiac hypertrophy. These findings clarify the function and molecular mechanism of BEL action in the therapeutic intervention of cardiac hypertrophy.

9.
Phytomedicine ; 118: 154923, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37352750

ABSTRACT

BACKGROUND: Continuous activation and inflammation of cardiac fibroblasts (CFs) are essential for myocardial fibrosis. Gentianella acuta (Michx.) Hiitonen (G. acuta), that contains xanthones with cardioprotective properties, a typical healthful herb extensively used to treat cardiovascular diseases in Inner Mongolia region of China. However, it remains unknown whether or not G. acuta-derived miRNAs can shield CFs from activation by inflammatory stimulation. Therefore, we tend to investigated the role and core mechanism of G. acuta-derived Gen-miR-1 in regulating fibrosis and inflammation induced by TGF-ß1. METHODS: An animal model for myocardial infarction was built by subcutaneous injections of ISO and treated with Gen-miR-1 using intragastric administration. The protective effect of Gen-miR-1 on the heart was assessed by pathomorphological analysis of myocardial fibrosis. Using loss- and gain-of-function approaches, Gen-miR-1 regulation of HAX1/HMG20A/Smads axis was investigated by utilizing luciferase assay, Western blot, co-immunoprecipitation, etc. RESULTS: Screened and identified Gen-miR-1 from G. acuta. Gen-miR-1 can enter the mouse body, and markedly inhibit myocardial infarction induced by ISO in mice, as well as suppresses fibrosis in CFs and attenuates the inflammatory response elicited by TGF-ß1 in vitro. Gen-miR-1 downregulates HCLS1-related Protein X-1 (HAX1) expression through direct binding to the 3' UTR of HAX1, which in turn relieves HAX1 from promoting the expression of high-mobility group protein 20A (HMG20A), whereas HMG20A downregulation restrains the activation of TGF-ß1/Smads signaling pathways, subsequently resulting in a decrease of fibrosis and in facilitating CFs anti-inflammatory effects induced by Gen-miR-1 in the context of CFs activation induced by TGF-ß1. CONCLUSIONS: Our results first uncovered unique bioactive components in G. acuta and elucidated the molecular mechanism by which G. acuta-derived Gen-miR-1 suppress inflammation and myocardial fibrosis. These findings expand our understanding of G. acuta's therapeutic properties and bioactive constituents. Gen-miR-1-regulated HAX1/HMG20A/Smads axis will be one potential therapeutic target for cardiac remodeling.


Subject(s)
Cardiomyopathies , Gentianella , MicroRNAs , Myocardial Infarction , Rats , Mice , Animals , Transforming Growth Factor beta1/metabolism , Rats, Sprague-Dawley , Cardiomyopathies/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Immunologic Factors/pharmacology , Fibroblasts , Fibrosis , Inflammation/metabolism , Myocardium/metabolism
10.
Medicine (Baltimore) ; 102(13): e33420, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000099

ABSTRACT

Melanin deposition is the main cause of skin darkening, which can lead to severe physical and psychological distress, necessitating the development of approaches for preserving skin health and fairness. Tyrosinase (TYR) is the rate-limiting enzyme in melanin synthesis, and its activity directly determines the degree of melanin accumulation in the skin, which in turn affects skin color. Currently, TYR inhibitors derived from natural products are widely used for skin whitening. San-Bai decoction (SBD) is effective for skin whitening and softening, but its mechanism of action, efficacy and high efficiency TYR inhibitors for skin whitening remain poorly understood. Here, we employed systems biology and network pharmacology to analyze the active compounds and targets of SBD, using the follow databases: TCMIP, TCMID, and BATMAN-TCM. Construct a molecular network centered on the regulation of TYR by SBD in skin whitening, using STRING database and cytoscape. Enrichment analysis using KOBAS database and ClusterProfiler. Virtual screening of candidate TYR inhibitors using Molecular Operating Environment software and Amber 18 software. SBD may act through tyrosine metabolism, melanogenesis, and other signaling pathways to regulate TYR activity and inhibit melanogenesis. We identified TYR and ESR1 as possible key targets for the whitening effect of SBD and screened out pentagalloylglucose, 1,3,6-tri-O-galloyl-beta-D-glucose, 1,2,4,6-tetragalloylglucose, and liquiritigenin 4',7-diglucoside as inhibitors of TYR, in addition to glycyrrhizic acid, pachymic acid methyl ester, nicotiflorin, gamma-sitosterol, and isoliensinine as inhibitors of ESR1. We also performed virtual drug screening of a library of natural small-molecule compounds (19,505 in total) and screened out lycopsamine, 2-phenylethyl b-D-glucopyranoside, and 6-beta-hydroxyhyoscyamine as inhibitors of TYR. We identified natural compounds with the potential for skin whitening through inhibition of TYR, thus advancing research on SBD and its applications.


Subject(s)
Biological Products , Monophenol Monooxygenase , Humans , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/pharmacology , Melanins/metabolism , Melanins/pharmacology , Biological Products/pharmacology , Skin/metabolism , Skin Pigmentation
11.
Metab Eng ; 75: 131-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36528227

ABSTRACT

FK228 (romidepsin) is the only natural histone deacetylases (HDACs) inhibitor approved by FDA to treat cutaneous and peripheral T-cell lymphoma. However, the limited supply and severe cardiotoxicity of FK228 underscore the importance to develop an effective synthetic biology platform for the manufacturing and fine-tuning of this drug lead. In this work, we constructed a Burkholderia chassis for the high-yield production of FK228-family (unnatural) natural products. By virtue of the optimized Burkholderia-specific recombineering system, the biosynthetic gene cluster (BGC) encoding the FK228-like skeleton thailandepsins (tdp) in Burkholderia thailandensis E264 was replaced with an attB integration site to afford the basal chassis KOGC1. The tdp BGC directly captured from E264 was hybridized with the FK228-encoding BGC (dep) using the versatile Red/ET technology. The hybrid BGC (tdp-dep) was integrated into the attB site of KOGC1, resulting in the heterologous expression of FK228. Remarkably, the titer reached 581 mg/L, which is 30-fold higher than that of native producer Chromobacterium violaceum No. 968. This success encouraged us to further engineer the NRPS modules 4 or 6 of hybrid tdp-dep BGC by domain units swapping strategy, and eight new FK228 derivatives (1-8) varying in the composition of amino acids were generated. Especially, the titers of 2 and 3 in KOGC1 were up to 985 mg/L and 453 mg/L, respectively. 2 and 3 displayed stronger cytotoxic activity than FK228. All in all, this work established a robust platform to produce FK228 and its new derivatives in sufficient quantities for anticancer drug development.


Subject(s)
Burkholderia , Depsipeptides , Depsipeptides/genetics , Depsipeptides/chemistry , Depsipeptides/pharmacology , Burkholderia/genetics , Burkholderia/chemistry , DNA-Binding Proteins
12.
World J Microbiol Biotechnol ; 39(2): 64, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36581678

ABSTRACT

Genome mining in silico approaches allow scientists to proficiently evaluate the genomic potency of secondary bioactive chemical producers and find new bioactive compounds in different bacteria. Streptomyces is one of the most ubiquitous bacterial genera in the environments, and well-known as prolific producers of diverse and valuable natural products (NPs) with significant biological activities. Mining and prioritizing of NP biosynthetic gene clusters (BGCs) would be the most important stage in the identification of novel compounds. Comparative genomics and genetic similarity network analysis of 62 Streptomyces public reference genomes demonstrated that individuals of these species exhibit a huge number of distinct NP BGCs, the most of which are cryptic and unconnected to any reported NPs with high phylogenetic variation among individuals. It was assumed that substantial heterogeneity across the varieties of species of Streptomyces drives outstanding biosynthetic and metabolic potential, making them plausible candidates for the identification of novel molecules.


Subject(s)
Biological Products , Streptomyces , Humans , Streptomyces/genetics , Streptomyces/metabolism , Phylogeny , Genomics , Secondary Metabolism/genetics , Multigene Family , Biological Products/metabolism , Genome, Bacterial
13.
BMC Microbiol ; 22(1): 323, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36581815

ABSTRACT

Recent years, Burkholderia species have emerged as a new source of natural products (NPs) with increasing attractions. Genome mining suggests the Burkholderia genomes include many natural product biosynthetic gene clusters (BGCs) which are new targets for drug discovery. In order to collect more Burkholderia, here, a strain S-53 was isolated from the soil samples on a mountain area in Changde, P.R. China and verified by comparative genetic analysis to belong to Burkholderia. The complete genome of Burkholderia strain S-53 is 8.2 Mbps in size with an average G + C content of 66.35%. Its taxonomy was both characterized by 16S rRNA- and whole genome-based phylogenetic trees. Bioinformatic prediction in silico revealed it has a total of 15 NP BGCs, some of which may encode unknown products. It is expectable that availability of these BGCs will speed up the identification of new secondary metabolites from Burkholderia and help us understand how sophisticated BGC regulation works.


Subject(s)
Burkholderia , Burkholderia/genetics , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Whole Genome Sequencing , Multigene Family
14.
Front Microbiol ; 13: 1051730, 2022.
Article in English | MEDLINE | ID: mdl-36406410

ABSTRACT

Strawberry gray mold caused by Botrytis cinerea is one of the most severe diseases in pre- and post-harvest periods. Although fungicides have been an effective way to control this disease, they can cause serious "3R" problems (Resistance, Resurgence and Residue). In this study, Streptomyces sp. sdu1201 isolated from the hindgut of the fungus-growing termite Odontotermes formosanus revealed significant antifungal activity against B. cinerea. Four compounds (1-4) were isolated from Streptomyces sp. sdu1201 and further identified as actinomycins by the HRMS and 1D NMR data. Among them, actinomycin D had the strongest inhibitory activity against B. cinerea with the EC50 value of 7.65 µg mL-1. The control effect of actinomycin D on strawberry gray mold was also tested on fruits and leaves in vitro, and its control efficiency on leaves was 78.77% at 3 d. Moreover, actinomycin D can also inhibit the polarized growth of germ tubes of B. cinerea. Therefore, Streptomyces sp. sdu1201 and actinomycin D have great potential to gray mold as biocontrol agents.

15.
Front Pharmacol ; 13: 1013428, 2022.
Article in English | MEDLINE | ID: mdl-36210820

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, has spread globally, affecting people's lives worldwide and hindering global development. Traditional Chinese Medicine (TCM) plays a unique role in preventing and treating COVID-19. Representative prescriptions for the COVID-19 treatment, Lianhua Qingwen (LHQW) and Qingfei Paidu Decoction (QFPD), effectively alleviate COVID-19 symptoms, delaying its progression and preventing its occurrence. Despite the extensive similarity in their therapeutic effects, the mechanisms and advantages of LHQW and QFPD in in treating mild-to-moderate COVID-19 remain elusive. To characterize the mechanisms of LHQW and QFPD in treating COVID-19, we used integrated network pharmacology and system biology to compare the LHQW and QFPD components, active compounds and their targets in Homo sapiens. LHQW and QFPD comprise 196 and 310 active compounds, some of which have identical targets. These targets are enriched in pathways associated with inflammation, immunity, apoptosis, oxidative stress, etc. However, the two TCM formulas also have specific active compounds and targets. In LHQW, arctiin, corymbosin, and aloe-emodin target neurological disease-related genes (GRM1 and GRM5), whereas in QFPD, isofucosterol, baicalein, nobiletin, oroxylin A, epiberberine, and piperlonguminine target immunity- and inflammation-related genes (mTOR and PLA2G4A). Our findings indicate that LHQW may be suitable for treating mild-to-moderate COVID-19 with nervous system symptoms. Moreover, QFPD may effectively regulate oxidative stress damage and inflammatory symptoms induced by SARS-CoV-2. These findings may provide references for the clinical application of LHQW and QFPD.

16.
Front Microbiol ; 13: 968053, 2022.
Article in English | MEDLINE | ID: mdl-36246257

ABSTRACT

Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.

17.
Front Microbiol ; 13: 939919, 2022.
Article in English | MEDLINE | ID: mdl-36274688

ABSTRACT

Gram-positive Streptomyces bacteria can produce valuable secondary metabolites. Streptomyces genomes include huge unknown silent natural product (NP) biosynthetic gene clusters (BGCs), making them a potential drug discovery repository. To collect antibiotic-producing bacteria from unexplored areas, we identified Streptomyces sp. CS-7 from mountain soil samples in Changsha, P.R. China, which showed strong antibacterial activity. Complete genome sequencing and prediction in silico revealed that its 8.4 Mbp genome contains a total of 36 BGCs for NPs. We purified two important antibiotics from this strain, which were structurally elucidated to be mayamycin and mayamycin B active against Staphylococcus aureus. We identified functionally a BGC for the biosynthesis of these two compounds by BGC direct cloning and heterologous expression in Streptomyces albus. The data here supported this Streptomyces species, especially from unexplored habitats, having a high potential for new NPs.

18.
Biomed Pharmacother ; 154: 113564, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988427

ABSTRACT

Cardiac remodelling mainly manifests as excessive myocardial hypertrophy and fibrosis, which are associated with heart failure. Gentianella acuta (G. acuta) is reportedly effective in cardiac protection; however, the mechanism by which it protects against cardiac remodelling is not fully understood. Here, we discuss the effects and mechanisms of G. acuta in transverse aortic constriction (TAC)-induced cardiac remodelling in rats. Cardiac function was analysed using echocardiography and electrocardiography. Haematoxylin and eosin, Masson's trichrome, and wheat germ agglutinin staining were used to observe pathophysiological changes. Additionally, real-time quantitative reverse transcription polymerase chain reaction and western blotting were used to measure protein levels and mRNA levels of genes related to myocardial hypertrophy and fibrosis. Immunofluorescence double staining was used to investigate the co-expression of endothelial and interstitial markers. Western blotting was used to estimate the expression and phosphorylation levels of the regulatory proteins involved in autophagy and endothelial-mesenchymal transition (EndMT). The results showed that G. acuta alleviated cardiac dysfunction and remodelling. The elevated levels of myocardial hypertrophy and fibrosis markers, induced by TAC, decreased significantly after G. acuta intervention. G. acuta decreased the expression of LC3 II and Beclin1, and increased p62 expression. G. acuta upregulated the expression of CD31 and vascular endothelial-cadherin, and prevented the expression of α-smooth muscle actin and vimentin. Furthermore, G. acuta inhibited the PI3K/Akt/FOXO1/3a pathway and activated the Notch signalling. These findings demonstrated that G. acuta has cardioprotective effects, such as alleviating myocardial fibrosis, inhibiting hypertrophy, reducing autophagy, and blocking EndMT by regulating the PI3K/Akt/FOXO1/3a and Notch signalling pathways.


Subject(s)
Aortic Valve Stenosis , Gentianella , Animals , Aortic Valve Stenosis/metabolism , Cardiomegaly/metabolism , Fibrosis , Myocardium/pathology , Nerve Tissue Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Ventricular Remodeling
19.
Pharmazie ; 77(5): 137-140, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35655382

ABSTRACT

Cardiomyocyte autophagy is closely related to myocardial infarction and hypertrophy. To study the molecular mechanism of autophagy is helpful for the prevention and treatment of these diseases. As a cell surface receptor, the function of ITGB1 gene in cardiomyocyte autophagy is not clear. The purpose of this research was to investigate the function and molecular mechanism of ITGB1 on autophagy. The autophagy-related marker proteins and signaling molecules were detected using western blot with knockdown and overexpression of ITGB1 in H9C2 cells. The results suggested that ITGB1 could inhibit autophagy and the mTORC2/Akt pathway molecules. To further investigate whether the effect of ITGB1 on autophagy might affect myocardial hypertrophy, we constructed AngII induced H9C2 cells and TAC induced rats models. The results showed that ITGB1 inhibited myocardial hypertrophy in both H9C2 cells and heart tissues of disease model. These data highlight the regulation mechanism on autophagy by ITGB1 and the potential usefulness of the gene as a potential target for preventing heart disease.


Subject(s)
Autophagy , Proto-Oncogene Proteins c-akt , Animals , Cardiomegaly/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction
20.
Chembiochem ; 23(17): e202200231, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35585772

ABSTRACT

Bacteria, especially Streptomyces spp., have emerged as a rich source for natural diterpenoids with diverse structures and broad bioactivities. Here, we review diterpenoids biosynthesized by Streptomyces, with an emphasis on their structures, biosyntheses, and bioactivities. Although diterpenoids from Streptomyces are relatively rare compared to those from plants and fungi, their novel skeletons, biosyntheses and bioactivities present opportunities for discovering new drugs, enzyme mechanisms, and applications in biocatalysis and metabolic pathway engineering.


Subject(s)
Diterpenes , Streptomyces , Diterpenes/chemistry , Fungi/metabolism , Metabolic Engineering , Metabolic Networks and Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...