Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 229: 114043, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34929581

ABSTRACT

Indoleamine 2,3-dioxygenase-1 (IDO1) is a potential target for the next generation of cancer immunotherapies. We describe the development of two series of IDO1 inhibitors incorporating a N-hydroxy-thiophene-carboximidamide core generated by knowledge-based drug design. Structural modifications to improve the cellular activity and pharmacokinetic (PK) properties of the compounds synthesized, including extension of the side chain of the N-hydroxythiophene-2-carboximidamide core, resulted in compound 27a, a potent IDO1 inhibitor which demonstrated significant (51%) in vivo target inhibition on IDO1 in a human SK-OV-3 ovarian xenograft tumor mouse model. This strategy is expected to be applicable to the discovery of additional IDO1 inhibitors for the treatment of other diseases susceptible to modulation of IDO1.


Subject(s)
Amides/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Amides/metabolism , Animals , Binding Sites , Cell Line, Tumor , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Half-Life , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Inbred ICR , Molecular Docking Simulation , Neoplasms/drug therapy , Structure-Activity Relationship , Thiophenes/chemistry , Transplantation, Heterologous
3.
Bioorg Chem ; 98: 103689, 2020 05.
Article in English | MEDLINE | ID: mdl-32171993

ABSTRACT

In an effort to develop new cancer therapeutics, we have reported clinical candidate BPR1K871 (1) as a potentanticancercompound in MOLM-13 and MV4-11 leukemia models, as well as in colorectal and pancreatic animal models. As BPR1K871 lacks oral bioavailability, we continued searching for orally bioavailable analogs through drug-like property optimization. We optimized both the physicochemical properties (PCP) as well as in vitro rat liver microsomal stability of 1, with concomitant monitoring of aurora kinase enzyme inhibition as well as cellular anti-proliferative activity in HCT-116 cell line. Structural modification at the 6- and 7-position of quinazoline core of 1 led to the identification of 34 as an orally bioavailable (F% = 54) multi-kinase inhibitor, which exhibits potent anti-proliferative activity against various cancer cell lines. Quinazoline 34 is selected as a promising oral lead candidate for further preclinical evaluation.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Aurora Kinases/metabolism , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Male , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Quinazolines/administration & dosage , Quinazolines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
J Med Chem ; 63(4): 1642-1659, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31961685

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO1) inhibitors are speculated to be useful in cancer immunotherapy, but a phase III clinical trial of the most advanced IDO1 inhibitor, epacadostat, did not meet its primary end point and was abandoned. In previous work, we identified the novel IDO1 inhibitor N-(4-chlorophenyl)-2-((5-phenylthiazolo[2,3-c][1,2,4]triazol-3-yl)thio)acetamide 1 through high-throughput screening (HTS). Herein, we report a structure-activity relationship (SAR) study of this compound, which resulted in the potent IDO1 inhibitor 1-(4-cyanophenyl)-3-(3-(cyclopropylethynyl)imidazo[2,1-b]thiazol-5-yl)thiourea 47 (hIDO IC50 = 16.4 nM). X-ray cocrystal structural analysis revealed that the basis for this high potency is a unique sulfur-aromatic interaction network formed by the thiourea moiety of 47 with F163 and F226. This finding is expected to inspire new approaches toward the discovery of potent IDO1 inhibitors in the future.


Subject(s)
Enzyme Inhibitors/chemistry , Imidazoles/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Thiazoles/chemistry , Binding Sites , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Structure , Protein Binding , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/metabolism
5.
Oncotarget ; 7(52): 86239-86256, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27863392

ABSTRACT

The design and synthesis of a quinazoline-based, multi-kinase inhibitor for the treatment of acute myeloid leukemia (AML) and other malignancies is reported. Based on the previously reported furanopyrimidine 3, quinazoline core containing lead 4 was synthesized and found to impart dual FLT3/AURKA inhibition (IC50 = 127/5 nM), as well as improved physicochemical properties. A detailed structure-activity relationship study of the lead 4 allowed FLT3 and AURKA inhibition to be finely tuned, resulting in AURKA selective (5 and 7; 100-fold selective over FLT3), FLT3 selective (13; 30-fold selective over AURKA) and dual FLT3/AURKA selective (BPR1K871; IC50 = 19/22 nM) agents. BPR1K871 showed potent anti-proliferative activities in MOLM-13 and MV4-11 AML cells (EC50 ~ 5 nM). Moreover, kinase profiling and cell-line profiling revealed BPR1K871 to be a potential multi-kinase inhibitor. Functional studies using western blot and DNA content analysis in MV4-11 and HCT-116 cell lines revealed FLT3 and AURKA/B target modulation inside the cells. In vivo efficacy in AML xenograft models (MOLM-13 and MV4-11), as well as in solid tumor models (COLO205 and Mia-PaCa2), led to the selection of BPR1K871 as a preclinical development candidate for anti-cancer therapy. Further detailed studies could help to investigate the full potential of BPR1K871 as a multi-kinase inhibitor.


Subject(s)
Antineoplastic Agents/chemical synthesis , Aurora Kinase A/antagonists & inhibitors , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Male , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL