Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
iScience ; 27(5): 109745, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706839

ABSTRACT

Zeolite-encaged metal nanoparticles (NPs) catalysts are emerging as a new frontier owing to their superior ability to stabilize the structure and catalytic performance in the thermal and environmental catalytic reaction. However, the pore size below 2 nm of the conventional zeolites usually limits the accessibility of metal active sites. Herein, Co-Cu NPs of about 2.5-3.5 nm were uniformly encapsulated in the intracrystalline mesoporous Silicalite-1 (S-1) through alkali-treatment ligand-assisted strategy. The obtained sample (termed CoxCu1-x@HS-1) exhibited efficient activity and stability in the ammonia borane hydrolysis with the highest TOF value of 21.46 molH2·molMe-1·min-1. UV-vis DRS spectra indicated that intracrystalline mesopores have greatly improved the openness and accessibility of the active sites, thus improving their catalytic performance. The introduction of Cu regulates the electronic properties of Co, further increasing hydrogen production activity. This research creates new prospects to design other high-performance hierarchical porous zeolite-confined metal/metal oxide catalysts.

2.
iScience ; 27(5): 109715, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706847

ABSTRACT

Hydrogen generation from boron hydride is important for the development of hydrogen economy. Cobalt (Co) element has been widely used in the hydrolysis of boron hydride. Pyrolysis is a common method for materials synthesis in catalytic fields. Herein, Co-based nanocomposites derived from the pyrolysis of organic metal precursors and used for hydrolysis of boron hydride are summarized and discussed. The different precursors consisting of MOF, supported, metal, and metal phosphide precursors are summarized. The catalytic mechanism consisting of dissociation mechanism based on oxidative addition-reduction elimination, pre-activation mechanism, SN2 mechanism, four-membered ring mechanism, and acid-base mechanism is intensively discussed. Finally, conclusions and outlooks are conveyed from the design of high-efficiency catalysts, the characterization of catalyst structure, the enhancement of catalytic activities, the investigation of the catalytic mechanism, and the catalytic stability of active structure. This review can provide guidance for designing high-efficiency catalysts and boosting development of hydrogen economy.

3.
BMC Geriatr ; 24(1): 404, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714944

ABSTRACT

BACKGROUND: Evidence on the effectiveness of influenza vaccination in the elderly is limited, and results are controversial. There are also few reports from China. METHODS: We conducted a test-negative case-control study design to estimate influenza vaccine effectiveness (VE) against laboratory-confirmed influenza-associated visits among elderly (aged ≥ 60 years) across four influenza seasons in Ningbo, China, from 2018 to 19 to 2021-22. Influenza-positive cases and negative controls were randomly matched in a 1:1 ratio according to age, sex, hospital, and date of influenza testing. We used logistic regression models to compare vaccination odds ratios (ORs) in cases to controls. We calculated the VE as [100% × (1-adjusted OR)] and calculated the 95% confidence interval (CI) around the estimate. RESULTS: A total of 30,630 elderly patients tested for influenza with virus nucleic acid or antigen during the study period. After exclusions, we included 1 825 influenza-positive cases and 1 825 influenza-negative controls. Overall, the adjusted VE for influenza-related visits was 63.5% (95% CI, 56.3-69.5%), but varied by season. Influenza VE was 59.8% (95% CI, 51.5-66.7%) for influenza A and 89.6% (95% CI, 77.1-95.3%) for influenza B. The VE for ages 60-69 and 70-79 was 65.2% (95% CI, 55.4-72.9%) and 69.8% (95% CI, 58.7-77.9%), respectively, but only 45.4% (95% CI, 6.2-68.2%) for ages 80 and over. CONCLUSIONS: Standard-dose inactivated influenza vaccine has shown good protection in the elderly in China. However, protection may not be satisfactory in people aged 80 years and older.


Subject(s)
Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Vaccines, Inactivated , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/diagnosis , Aged , Male , Female , China/epidemiology , Case-Control Studies , Vaccines, Inactivated/administration & dosage , Middle Aged , Aged, 80 and over , East Asian People
4.
Nano Lett ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747334

ABSTRACT

Soap bubbles exhibit abundant fascinating phenomena throughout the entire life of evolution with different fundamental physics governing them. Nevertheless, the complicated dynamics of small objects in soap films are still unrevealed. Here, we report the first observation of spontaneous particle ordering in a complicated galaxy of soap films without any external energy. The balance of interfacial tension at two liquid-gas interfaces is theoretically predicted to govern belted wetted particles (BWPs) traveling along a specified path spontaneously. Such spontaneous particle path-finding is found to depend on the particle size and hydrophilic properties. Spontaneous particle sorting is directly realized via these discrete and distinctive paths for different particles. The deformation of the soap membrane facilitates 1D/2D particle organization along the path. This observation represents the discovery of a new spontaneous order phenomenon in soap film systems and provides a new energy-free approach for particle separation and soft colloidal crystal assembly.

5.
Adv Mater ; : e2404738, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695468

ABSTRACT

Plasmonic semiconductors with broad spectral response hold significant promise for sustainable solar energy utilization. However, the surface inertness limits the photocatalytic activity. Herein, a novel approach is proposed to improve the body crystallinity and increase the surface oxygen vacancies of plasmonic tungsten oxide by the combination of hydrochloric acid (HCl) regulation and light irradiation, which can promote the adsorption of tert-butyl alcohol (TBA) on plasmonic tungsten oxide and overcome the hindrance of the surface depletion layer in photocatalytic alcohol dehydration. Additionally, this process can concentrate electrons for strong plasmonic electron oscillation on the near surface, facilitating rapid electron transfer within the adsorbed TBA molecules for C-O bond cleavage. As a result, the activation barrier for TBA dehydration is significantly reduced by 93% to 6.0 kJ mol-1, much lower than that of thermocatalysis (91 kJ mol-1). Therefore, an optimal isobutylene generation rate of 1.8 mol g-1 h-1 (selectivity of 99.9%) is achieved. A small flow reaction system is further constructed, which shows an isobutylene generation rate of 12 mmol h-1 under natural sunlight irradiation. This work highlights the potential of plasmonic semiconductors for efficient photocatalytic alcohol dehydration, thereby promoting the sustainable utilization of solar energy.

6.
Adv Sci (Weinh) ; : e2308040, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581142

ABSTRACT

The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.

7.
Nano Lett ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602330

ABSTRACT

The miniaturization of biomedical microrobots is crucial for their in vivo applications. However, it is challenging to reduce their size while maintaining their biomedical functions. To resolve this contradiction, we propose a semiphysical design concept for developing miniaturized microrobots, in which invisible components such as light beams are utilized to replace most of the physical parts of a microrobot, thus minimizing its physical size without sacrificing its biomedical functions. According to this design, we have constructed a semiphysical microrobot (SPM) composed of main light beam, light-responsive microparticle, and auxiliary light beam, serving as the actuation system, recognition part, and surgical claws, respectively. Based on the functions of actuation, biosensing, and microsurgery, a SPM has been applied for a series of applications, including thrombus elimination at the branch vessel, stratified removal of multilayer thrombus, and biosensing-guided microsurgery. The proposed semiphysical design concept should bring new insight into the development of miniaturized biomedical microrobots.

8.
Nanoscale ; 16(18): 9029-9035, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38629997

ABSTRACT

Precise monitoring and quantification of H2O2 is highly urgent and of great significance for biomedicine, food safety, environmental monitoring, etc. Herein, we proposed a facile near-infrared (NIR) excited fluorescent probe composed of upconversion nanoparticles (UCNPs) and non-metallic plasmonic WO3-x for ultrasensitive quantitative H2O2 detection. Plasmonic WO3-x with oxygen vacancy-induced LSPR achieved over 680-fold enhancement of upconversion fluorescence at 520 nm, and also acts as the sensitive recognition site for H2O2. H2O2 quenched the LSPR band of plasmonic WO3-x, further significantly influencing adjacent fluorescence signals depending on its concentration. The probe exhibits a good linear response to H2O2 with a low detection limit (10-9 M) and a wide concentration range (0-50 µM), and shows satisfactory application in the determination of H2O2 in blood and milk. This work may provide new ideas for the development of non-invasive fluorescent nanoprobes and plasmon-assisted biochemical detection methods.

9.
ChemSusChem ; : e202301779, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416074

ABSTRACT

Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2 O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.

10.
Angew Chem Int Ed Engl ; 63(16): e202319983, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38404154

ABSTRACT

Herein, an interfacial electron redistribution is proposed to boost the activity of carbon-supported spinel NiCo2O4 catalyst toward oxygen conversion via Fe, N-doping strategy. Fe-doping into octahedron induces a redistribution of electrons between Co and Ni atoms on NiCo1.8Fe0.2O4@N-carbon. The increased electron density of Co promotes the coordination of water to Co sites and further dissociation. The generation of proton from water improves the overall activity for the oxygen reduction reaction (ORR). The increased electron density of Ni facilitates the generation of oxygen vacancies. The Ni-VO-Fe structure accelerates the deprotonation of *OOH to improve the activity toward oxygen evolution reaction (OER). N-doping modulates the electron density of carbon to form active sites for the adsorption and protonation of oxygen species. Fir wood-derived carbon endows catalyst with an integral structure to enable outstanding electrocatalytic performance. The NiCo1.8Fe0.2O4@N-carbon express high half-wave potential up to 0.86 V in ORR and low overpotential of 270 mV at 10 mA cm-2 in OER. The zinc-air batteries (ZABs) assembled with the as-prepared catalyst achieve long-term cycle stability (over 2000 cycles) with peak power density (180 mWcm-2). Fe, N-doping strategy drives the catalysis of biomass-derived carbon-based catalysts to the highest level for the oxygen conversion in ZABs.

11.
iScience ; 27(3): 109064, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38375219

ABSTRACT

Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by H2O2. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.

12.
J Colloid Interface Sci ; 660: 792-799, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38277836

ABSTRACT

Non-precious metals have shown attractive catalytic prospects in hydrogen production from ammonia borane hydrolysis. However, the sluggish reaction kinetics in the hydrolysis process remains a challenge. Herein, P-bridged Fe-X-Co coupled sites in hollow carbon spheres (Fe-CoP@C) has been synthesized through in situ template solvothermal and subsequent surface-phosphorization. Benefiting from the optimized electronic structure induced by Fe doping to enhance the specific activity of Co sites, bimetallic synergy and hollow structure, the as-prepared Fe-CoP@C exhibits superior performances with a turnover frequency (TOF) of 183.5 min-1, and stability of over 5 cycles for ammonia borane hydrolysis, comparable to noble metal catalysts. Theoretical calculations reveal that the P-bridged Fe-X-Co coupled sites on the Fe-CoP@C catalyst surfaces is beneficial to adsorb reactant molecules and reduce their reaction barrier. This strategy of constructing hollow P-bridged bimetallic coupled sites may open new avenues for non-precious metal catalysis.

13.
J Colloid Interface Sci ; 658: 22-31, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38091795

ABSTRACT

Designing non-precious catalysts to synergistically achieve a facilitated exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a hetero-structured catalyst CoP-Co supported on porous g-C3N4 nanosheets (CoP-Co/CN-I) was prepared by pyrolysis and P-inducing strategy. The optimal catalyst achieves a turnover frequency (TOF) of 26 min-1 at room temperature and the apparent activation energy (Ea) is 35.5 kJ·mol-1. The catalytic activity is ranked top among the non-precious metal phosphides or the other supports. Meanwhile, the catalytic activity has no significant decrease even after 5 cycles. The CoP/Co interfaces provide richly exposed active sites, optimize hydrogen/water absorption free energy via electronic coupling, and thus improve the catalytic activity. The experimental results reveal that the CoP/Co heterojunction improves the catalytic activity due to the construction of dual-active sites. This research facilitates the innovative construction of non-noble metal catalysts to meet industrial demand for heterogeneous catalysis.

14.
Small ; 20(4): e2305782, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37718497

ABSTRACT

Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.

15.
J Comput Assist Tomogr ; 48(1): 137-142, 2024.
Article in English | MEDLINE | ID: mdl-37531643

ABSTRACT

OBJECTIVE: To investigate the utility of texture analysis in detecting osseous changes associated with hyperparathyroidism on neck CT examinations compared with control patients and to explore the best regions in the head and neck to evaluate changes in the trabecular architecture secondary to hyperparathyroidism. METHODS: Patients with hyperparathyroidism who underwent a 4D CT of the neck with contrast were included in this study. Age-matched control patients with no history of hyperparathyroidism who underwent a contrast-enhanced neck CT were also included. Mandibular condyles, bilateral mandibular bodies, the body of the C4 vertebra, the manubrium of the sternum, and bilateral clavicular heads were selected for analysis, and oval-shaped regions of interest were manually placed. These segmented areas were imported into an in-house developed texture analysis program, and 41 texture analysis features were extracted. A mixed linear regression model was used to compare differences in the texture analysis features contoured at each of the osseous structures between patients with hyperparathyroidism and age-matched control patients. RESULTS: A total of 30 patients with hyperparathyroidism and 30 age-matched control patients were included in this study. Statistically significant differences in texture features between patients with hyperparathyroidism and control patients in all 8 investigated osseous regions. The sternum showed the greatest number of texture features with statistically significant differences between these groups. CONCLUSIONS: Some CT texture features demonstrated statistically significant differences between patients with hyperparathyroidism and control patients. The results suggest that texture features may discriminate changes in the osseous architecture of the head and neck in patients with hyperparathyroidism.


Subject(s)
Hyperparathyroidism, Primary , Humans , Hyperparathyroidism, Primary/diagnostic imaging , Retrospective Studies , Four-Dimensional Computed Tomography
16.
Small Methods ; 8(1): e2301112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880897

ABSTRACT

The active delivery of nanodrugs has been a bottleneck problem in nanomedicine. While modification of nanodrugs with targeting agents can enhance their retention at the lesion location, the transportation of nanodrugs in the circulation system is still a passive process. The navigation of nanodrugs with external forces such as magnetic field has been shown to be effective for active delivery, but the existing techniques are limited to specific materials like magnetic nanoparticles. In this study, an alternative actuation method is proposed based on optical manipulation for remote navigation of nanodrugs in vivo, which is compatible with most of the common drug carriers and exhibits significantly higher manipulation precision. By the programmable scanning of the laser beam, the motion trajectory and velocity of the nanodrugs can be precisely controlled in real time, making it possible for intelligent drug delivery, such as inverse-flow transportation, selective entry into specific vascular branch, and dynamic circumvention across obstacles. In addition, the controlled mass delivery of nanodrugs can be realized through indirect actuation by the microflow field. The developed optical manipulation method provides a new solution for the active delivery of nanodrugs, with promising potential for the treatment of blood diseases such as leukemia and thrombosis.


Subject(s)
Drug Carriers , Nanoparticles , Drug Delivery Systems , Nanomedicine/methods , Light
17.
Angew Chem Int Ed Engl ; 63(4): e202316550, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38038407

ABSTRACT

Single-atom alloys (SAAs), combining the advantages of single-atom and nanoparticles (NPs), play an extremely significant role in the field of heterogeneous catalysis. Nevertheless, understanding the catalytic mechanism of SAAs in catalysis reactions remains a challenge compared with single atoms and NPs. Herein, ruthenium-nickel SAAs (RuNiSAAs ) synthesized by embedding atomically dispersed Ru in Ni NPs are anchored on two-dimensional Ti3 C2 Tx MXene. The RuNiSAA-3 -Ti3 C2 Tx catalysts exhibit unprecedented activity for hydrogen evolution from ammonia borane (AB, NH3 BH3 ) hydrolysis with a mass-specific activity (rmass ) value of 333 L min-1 gRu -1 . Theoretical calculations reveal that the anchoring of SAAs on Ti3 C2 Tx optimizes the dissociation of AB and H2 O as well as the binding ability of H* intermediates during AB hydrolysis due to the d-band structural modulation caused by the alloying effect and metal-supports interactions (MSI) compared with single atoms and NPs. This work provides useful design principles for developing and optimizing efficient hydrogen-related catalysts and demonstrates the advantages of SAAs over NPs and single atoms in energy catalysis.

18.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37962055

ABSTRACT

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Subject(s)
Biosensing Techniques , Nanofibers , Biosensing Techniques/methods , Silk , Semiconductors , Bacteria
19.
Small Methods ; 8(1): e2301105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37818749

ABSTRACT

Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.

20.
Small ; : e2306369, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054776

ABSTRACT

Cobalt sulfide is deemed a promising anode material, owing to its high theoretical capacity (630 mAh g-1 ). Due to its low conductivity, fast energy decay, and the huge volume change during the lithiation process limits its practical application. In this work, a simple and large-scale method are developed to prepare Co1-x S nanoparticles embedding in N-doped carbon/graphene (CSCG). At a current density of 0.2 C, the reversible discharge capacity of CSCG maintains 937 mAh g-1 after 200 cycles. The discharge capacity of CSCG maintains at 596 mAh g-1 after 500 cycles at the high current density of 2.0 C. The excellent performance of CSCG is due to its unique structural features. The addition of rGO buffered volume changes while preventing Co1-x S from crushing/aggregating during the cycle, resulting in multiplier charge-discharge and long cycle life. The N-doped carbon provides a simple and easy way to achieve excellent performance in practical applications. Combined with density functional theory calculation, the presence of Co-vacancies(Co1-x ) increases more active site. Moreover, N-doping carbon is beneficial to the improve adsorption energy. This work presents a simple and effective structural engineering strategy and also provides a new idea to improve the performance of Li-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...