Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 278: 116403, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710145

ABSTRACT

RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.


Subject(s)
Air Pollutants , Lymphocytes , Mice, Inbred BALB C , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mice , Lymphocytes/drug effects , Lymphocytes/immunology , Air Pollutants/toxicity , Inflammation/chemically induced , Eosinophils/immunology , Eosinophils/drug effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/chemically induced , Female , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Male
2.
Clin Rev Allergy Immunol ; 64(1): 17-32, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35031959

ABSTRACT

The current COVID-19 global pandemic poses immense challenges to global health, largely due to the difficulty to detect infection in the early stages of the disease, as well as the current lack of effective antiviral therapy. Research and understanding of the human immune system can provide important theoretical and technical support for the clinical diagnosis and treatment of COVID-19, the clinical implementations of which include immunoassays and immunotherapy, which play a crucial role in the fight against the pandemic. This review consolidates the current scientific evidence for immunoassay, which includes multiple methods of detecting antigen and antibody against SARS-CoV-2. We compared the characteristics, advantages and disadvantages, and clinical applications of these three detection techniques. In addition to detecting viral infections, knowledge on the body's immunity against the virus is desirable; thus, the immunotherapy-based neutralizing antibody (nAb) detection methods were discussed. We also gave a brief introduction to the new immunoassay technology such as biosensing. This was followed by an in-depth and extensive review on a variety of immunotherapy methods. It includes convalescent plasma therapy, neutralizing antibody-based treatments targeting different regions of SARS-CoV-2, immunotherapy targeted on the host cell including inhibiting the host cell receptor and cytokine storm, as well as cocktail antibodies, cross-neutralizing antibodies, and immunotherapy based on cross-reactivity between viral epitopes and autoepitopes and autoantibody. Despite the development of various immunological testing methods and antibody therapies, the current global situation of COVID-19 is still tense. We need more efficient detection methods and more reliable antibody therapies. The up-to-date knowledge on therapeutic strategies will likely help clinicians worldwide to protect patients from life-threatening viral infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , COVID-19 Serotherapy , Antibodies, Neutralizing/therapeutic use , Immunotherapy/methods , Immunoassay
3.
Front Immunol ; 13: 914381, 2022.
Article in English | MEDLINE | ID: mdl-36045678

ABSTRACT

Innate anti-inflammatory mechanisms are essential for immune homeostasis and can present opportunities to intervene inflammatory diseases. In this report, we found that YAP isoform 9 (YAP9) is an essential negative regulator of the potent inflammatory stimuli such as TNFα, IL-1ß, and LPS. YAP9 constitutively interacts with another anti-inflammatory regulator A20 (TNFAIP3) to suppress inflammatory responses, but A20 and YAP can function only in the presence of the other. YAP9 uses a short stretch of amino acids in the proline-rich domain (PRD) and transactivation domain (TAD) suppress the inflammatory signaling while A20 mainly uses the zinc finger domain 7 (ZF7). Cell-penetrating synthetic PRD, TAD, and ZF7 peptides act as YAP9 and A20 mimetics respectively to suppress the proinflammatory responses at the cellular level and in mice. Our data uncover a novel anti-inflammatory axis and anti-inflammatory agents that can be developed to treat acute or chronic conditions where TNFα, IL-1ß, or LPS plays a key role in initiating and/or perpetuating inflammation.


Subject(s)
Inflammation/metabolism , Lipopolysaccharides , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , YAP-Signaling Proteins/metabolism , Animals , Inflammation/drug therapy , Lipopolysaccharides/metabolism , Mice , Protein Isoforms/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
4.
Microbiol Spectr ; 10(4): e0082022, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35880867

ABSTRACT

Bacteriophages are the most abundant entities in the biosphere, and many genomes of rare and novel bacteriophages have been sequenced to date. However, bacteriophage functional genomics has been limited by a lack of effective research methods. Clustered regularly interspaced short palindromic repeat/CRISPR-associated gene (CRISPR-Cas) systems provide bacteriophages with a new mechanism for attacking host bacteria as well as new tools for study bacteriophage functional genomics. It has been reported that bacteriophages are not only the driving elements of the evolution of prokaryote CRISPR arrays but also the targets of CRISPR-Cas systems. In this study, a phage genome editing platform based on the heterologous CRISPR-Cas9 system was theoretically designed, and a Vibrio natriegens phage TT4P2 genome editing experiment was carried out in vivo in the host bacterium Vibrio natriegens TT4 to achieve phage gene deletion and replacement. The construction of this phage genome editing platform is expected to solve the problem of insufficient research on phage gene diversity, promote the development of phage synthetic biology and nanotechnology, and even accelerate the discovery of new molecular biology tools. IMPORTANCE Bacteriophages are the most numerous organisms on earth and are known for their diverse lifestyles. Since the discovery of bacteriophages, our knowledge of the wider biological world has undergone immense and unforeseen changes. A variety of V. natriegens phages have been detected, but few have been well characterized. CRISPR was first documented in Escherichia coli in 1987. It has been reported that the CRISPR-Cas system can target and cleave invaders, including bacteriophages, in a sequence-specific manner. Here, we show that the construction of a phage genome editing platform based on the heterologous CRISPR-Cas9 system can achieve V. natriegens phage TT4P2 gene editing and can also improve the efficiency and accuracy of phage TT4P2 gene editing.


Subject(s)
Bacteriophages , Gene Editing , Bacteriophages/genetics , CRISPR-Cas Systems , Escherichia coli/genetics , Gene Editing/methods , Vibrio
5.
Front Immunol ; 13: 907646, 2022.
Article in English | MEDLINE | ID: mdl-35774781

ABSTRACT

Colon ascendens stent peritonitis (CASP) surgery induces a leakage of intestinal contents which may cause polymicrobial sepsis related to post-operative failure of remote multi-organs (including kidney, liver, lung and heart) and possible death from systemic syndromes. Mechanisms underlying such phenomena remain unclear. This article aims to elucidate the mechanisms underlying the CASP-model sepsis by analyzing real-world GEO data (GSE24327_A, B and C) generated from mice spleen 12 hours after a CASP-surgery in septic MyD88-deficient and wildtype mice, compared with untreated wildtype mice. Firstly, we identify and characterize 21 KO MyD88-associated signaling pathways, on which true key regulators (including ligands, receptors, adaptors, transducers, transcriptional factors and cytokines) are marked, which were coordinately, significantly, and differentially expressed at the systems-level, thus providing massive potential biomarkers that warrant experimental validations in the future. Secondly, we observe the full range of polymicrobial (viral, bacterial, and parasitic) sepsis triggered by the CASP-surgery by comparing the coordinated up- or down-regulations of true regulators among the experimental treatments born by the three data under study. Finally, we discuss the observed phenomena of "systemic syndrome", "cytokine storm" and "KO MyD88 attenuation", as well as the proposed hypothesis of "spleen-mediated immune-cell infiltration". Together, our results provide novel insights into a better understanding of innate immune responses triggered by the CASP-model sepsis in both wildtype and MyD88-deficient mice at the systems-level in a broader vision. This may serve as a model for humans and ultimately guide formulating the research paradigms and composite strategies for the early diagnosis and prevention of sepsis.


Subject(s)
Peritonitis , Sepsis , Animals , Immunity, Innate , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Peritonitis/etiology , Signal Transduction , Stents/adverse effects
6.
Front Immunol ; 13: 737968, 2022.
Article in English | MEDLINE | ID: mdl-35432356

ABSTRACT

Objective: This study aims to explore the potential of in situ airway differentiation of eosinophil progenitors (EoPs) and hematopoietic progenitor cells (HPCs) in sputum and peripheral blood from patients with non-asthmatic eosinophilic bronchitis (NAEB), eosinophilic asthma (EA), and healthy controls (HC). Methods: Using flow cytometry, we enumerated sputum and blood HPCs and EoPs in patients with NAEB (n=15), EA (n=15), and HC (n=14) at baseline. Patients with NAEB and EA were then treated for 1 month with budesonide (200 µg, bid) or budesonide and formoterol (200/6 µg, bid), respectively. HPCs and EoPs in both compartments were re-evaluated. Results: At baseline, NAEB and EA both had significantly greater numbers of sputum but not blood HPCs and EoPs (p<0.05) compared to HC. There were no differences between NAEB and EA. After 1 month of inhaled corticosteroid (ICS) treatment, NAEB patients showed a significant improvement in cough symptoms, but the attenuation of sputum HPC and EoP levels was not significant. Conclusions: NAEB patients have increased airway levels of HPCs and EoPs. One-month treatment with ICS did not fully suppress the level of EoPs in NAEB. Controlling in situ airway differentiation of EoPs may control airway eosinophilia and provide long-term resolution of symptoms in NAEB.


Subject(s)
Asthma , Bronchitis , Pulmonary Eosinophilia , Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Bronchitis/diagnosis , Bronchitis/drug therapy , Budesonide/therapeutic use , Eosinophils , Humans , Pulmonary Eosinophilia/drug therapy
7.
Virol J ; 19(1): 49, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35305698

ABSTRACT

The newly identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global health emergency (COVID-19) because of its rapid spread and high mortality. Since the virus epidemic, many pathogenic mechanisms have been revealed, and virus-related vaccines have been successfully developed and applied in clinical practice. However, the pandemic is still developing, and new mutations are still emerging. Virus pathogenicity is closely related to the immune status of the host. As innate immunity is the body's first defense against viruses, understanding the inhibitory effect of SARS-CoV-2 on innate immunity is of great significance for determining the target of antiviral intervention. This review summarizes the molecular mechanism by which SARS-CoV-2 escapes the host immune system, including suppressing innate immune production and blocking adaptive immune priming. Here, on the one hand, we devoted ourselves to summarizing the combined action of innate immune cells, cytokines, and chemokines to fine-tune the outcome of SARS-CoV-2 infection and the related immunopathogenesis. On the other hand, we focused on the effects of the SARS-CoV-2 on innate immunity, including enhancing viral adhesion, increasing the rate of virus invasion, inhibiting the transcription and translation of immune-related mRNA, increasing cellular mRNA degradation, and inhibiting protein transmembrane transport. This review on the underlying mechanism should provide theoretical support for developing future molecular targeted drugs against SARS-CoV-2. Nevertheless, SARS-CoV-2 is a completely new virus, and people's understanding of it is in the process of rapid growth, and various new studies are also being carried out. Although we strive to make our review as inclusive as possible, there may still be incompleteness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Cytokines/metabolism , Humans , Immunity, Innate
8.
Front Genet ; 13: 825318, 2022.
Article in English | MEDLINE | ID: mdl-35154284

ABSTRACT

Identifying cancer-related miRNAs (or microRNAs) that precisely target mRNAs is important for diagnosis and treatment of cancer. Creating novel methods to identify candidate miRNAs becomes an imminent Frontier of researches in the field. One major obstacle lies in the integration of the state-of-the-art databases. Here, we introduce a novel method, MIMRDA, which incorporates the miRNA and mRNA expression profiles for predicting miRNA-disease associations to identify key miRNAs. As a proof-of-principle study, we use the MIMRDA method to analyze TCGA datasets of 20 types (BLCA, BRCA, CESE, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, READ, SKCM, STAD, THCA and UCEC) of cancer, which identified hundreds of top-ranked miRNAs. Some (as Category 1) of them are endorsed by public databases including TCGA, miRTarBase, miR2Disease, HMDD, MISIM, ncDR and mTD; others (as Category 2) are supported by literature evidences. miR-21 (representing Category 1) and miR-1258 (representing Category 2) display the excellent characteristics of biomarkers in multi-dimensional assessments focusing on the function similarity analysis, overall survival analysis, and anti-cancer drugs' sensitivity or resistance analysis. We compare the performance of the MIMRDA method over the Limma and SPIA packages, and estimate the accuracy of the MIMRDA method in classifying top-ranked miRNAs via the Random Forest simulation test. Our results indicate the superiority and effectiveness of the MIMRDA method, and recommend some top-ranked key miRNAs be potential biomarkers that warrant experimental validations.

10.
Mol Immunol ; 109: 1-11, 2019 05.
Article in English | MEDLINE | ID: mdl-30836204

ABSTRACT

Protease activity of allergens has been suggested to be involved in the pathogenesis of allergic diseases. The major allergen Der f 3 from Dermatophagoides farinae harbors serine protease activity, but its immunopathogenesis remains unclear. This study aims to explore the effect of Der f 3 on the airway epithelial barrier and on the molecular pathways by which Der f 3 induces inflammation. RNA-seq was performed to identify differentially expressed genes in bronchial airway epithelial cells (AEC) between native Der f 3 and heat-inactivated (H) Der f 3, coupled with real-time PCR (RT-PCR) and ELISA for validation. Unlike other protease allergens such as that induce Th2-promoting alarmins (IL-25, IL-33, TSLP) in AECs, Der f 3 induced pro-inflammatory cytokines and chemokines including IL-6, IL-8 and GM-CSF, which are known to promote Th17 response. These pro-inflammatory mediators were induced by Der f 3 via the MAPK and NF-κB pathways as well as the store-operated calcium signaling. Gene silencing with small interfering RNA in A549 and BEAS-2B cells indicated that activation of AECs by Der f 3 was mainly dependent on protease-activated receptor 2 (PAR-2), while PAR-1 was also required for the full activation of AECs. Double knock-down of PAR-1 and PAR-2 largely impaired Der f 3-inducecd IL-8 production and subsequent signaling pathways. Our data suggest that Der f 3 induces pro-inflammatory mediators in human epithelial cell lines via the PARs-MAPK-NF-κB axis. Our results provide a molecular mechanism by which Der f 3 may trigger the Th17-skewed allergic response toward house dust mites.


Subject(s)
Allergens/immunology , Arthropod Proteins/immunology , Epithelial Cells/immunology , Pyroglyphidae/immunology , Receptor, PAR-1/immunology , Receptor, PAR-2/immunology , Respiratory Mucosa/immunology , Serine Endopeptidases/immunology , A549 Cells , Allergens/pharmacology , Animals , Arthropod Proteins/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/genetics , Calcium Signaling/immunology , Cytokines/genetics , Cytokines/immunology , Epithelial Cells/pathology , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/immunology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Gene Knockdown Techniques , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inflammation Mediators/immunology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Receptor, PAR-1/genetics , Receptor, PAR-2/genetics , Serine Endopeptidases/pharmacology , Th17 Cells/immunology , Th17 Cells/pathology , Th2 Cells/immunology , Th2 Cells/pathology
11.
Biomed Res Int ; 2015: 187620, 2015.
Article in English | MEDLINE | ID: mdl-26000283

ABSTRACT

AIM: To investigate differences in the efficacy of sublingual immunotherapy with Dermatophagoides farinae drops in monosensitized and polysensitized allergic rhinitis patients. METHODS: The patients enrolled in the study were treated for more than one year by sublingual immunotherapy (SLIT) using Dermatophagoides farinae drops and were divided into a monosensitized group (n = 20) and a polysensitized group (n = 30). Total nasal symptom scores of patients before and after SLIT were analyzed to evaluate the curative effect. The phylogenetic tree of dust mite allergens as well as other allergens that were tested by skin prick test was constructed to help the analysis. RESULTS: There was no significant difference in the efficacy of SLIT between dust mite monosensitized and polysensitized patients. CONCLUSIONS: Both dust mite monosensitized and polysensitized patients could be cured by SLIT using Dermatophagoides farinae drops. This study provides a reference for the selection of allergens to be used in immunotherapy for polysensitized AR patients.


Subject(s)
Antigens, Dermatophagoides/immunology , Dermatophagoides farinae/immunology , Immunization , Rhinitis, Allergic/immunology , Rhinitis, Allergic/therapy , Sublingual Immunotherapy , Animals , Cross Reactions/immunology , Dose-Response Relationship, Immunologic , Humans , Phylogeny , Skin Tests , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...