Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Opt Lett ; 49(8): 1949-1952, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621048

ABSTRACT

Methods have been proposed in recent years aimed at pushing photoacoustic imaging resolution beyond the acoustic diffraction limit, among which those based on random speckle illumination show particular promise. In this Letter, we propose a data-driven deep learning approach to processing the added spatiotemporal information resulting from speckle illumination, where the neural network learns the distribution of absorbers from a series of different samplings of the imaged area. In ex-vivo experiments based on the tomography configuration with prominent artifacts, our method successfully breaks the acoustic diffraction limit and delivers better results in identifying individual targets when compared against a selection of other leading methods.

2.
Phenomics ; 4(1): 72-80, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38605911

ABSTRACT

This study aims to introduce the protocol for ultrasonic backscatter measurements of musculoskeletal properties based on a novel ultrasonic backscatter bone diagnostic (UBBD) instrument. Dual-energy X-ray absorptiometry (DXA) can be adopted to measure bone mineral density (BMD) in the hip, spine, legs and the whole body. The muscle and fat mass in the legs and the whole body can be also calculated by DXA body composition analysis. Based on the proposed protocol for backscatter measurements by UBBD, ultrasonic backscatter signals can be measured in vivo, deriving three backscatter parameters [apparent integral backscatter (AIB), backscatter signal peak amplitude (BSPA) and the corresponding arrival time (BSPT)]. AIB may provide important diagnostic information about bone properties. BSPA and BSPT may be important indicators of muscle and fat properties. The standardized backscatter measurement protocol of the UBBD instrument may have the potential to evaluate musculoskeletal characteristics, providing help for promoting the application of the backscatter technique in the clinical diagnosis of musculoskeletal disorders (MSDs), such as osteoporosis and muscular atrophy.

3.
J Acoust Soc Am ; 155(4): 2670-2686, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38639562

ABSTRACT

Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%-99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = -0.87; p < 0.001) and trabecular structures (|r|=0.43-0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.


Subject(s)
Bone and Bones , Cancellous Bone , Animals , Cattle , Cancellous Bone/diagnostic imaging , Scattering, Radiation , Ultrasonography/methods , Bone and Bones/diagnostic imaging , Bone Density/physiology , Spectrum Analysis/methods
4.
Phys Med Biol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38636526

ABSTRACT

OBJECTIVE: This study aims to perform super-resolution (SR) reconstruction of ultrasound images using a modified diffusion model, designated as the Diffusion Model for Ultrasound Image Super-Resolution (DMUISR). SR involves converting low-resolution images to high-resolution ones, and the proposed model is designed to enhance the suitability of diffusion models for this task in the context of ultrasound imaging. APPROACH: DMUISR incorporates a multi-layer self-attention (MLSA) mechanism and a wavelet-transform based low-resolution image (WTLR) encoder to enhance its suitability for ultrasound image SR tasks. The model takes interpolated and magnified images as input and outputs high-quality, detailed SR images. The study utilized 1,334 ultrasound images from the public fetal head-circumference dataset (HC18) for evaluation. MAIN RESULTS: Experiments were conducted at 2×, 4×, and 8× magnification factors. DMUISR outperformed mainstream ultrasound SR methods (Bicubic, VDSR, DECUSR, DRCN, REDNet, SRGAN) across all scales, providing high-quality images with clear structures and rich detailed textures in both hard and soft tissue regions. DMUISR successfully accomplished multiscale SR reconstruction while suppressing over-smoothing and mode collapse problems. Quantitative results showed that DMUISR achieved the best performance in terms of learned perceptual image patch similarity (LPIPS), with a significant decrease of over 50% at all three magnification factors (2×, 4×, and 8×), as well as improvements in peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Ablation experiments validated the effectiveness of the MLSA mechanism and WTLR encoder in improving DMUISR's SR performance. Furthermore, by reducing the number of diffusion steps, the computational time of DMUISR was shortened to nearly one-tenth of its original while maintaining image quality without significant degradation. SIGNIFICANCE: This study demonstrates that the modified diffusion model, DMUISR, provides superior performance for SR reconstruction of ultrasound images and has potential in improving imaging quality in the medical ultrasound field.

5.
Ultrasonics ; 138: 107268, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38402836

ABSTRACT

Elastography is a promising diagnostic tool that measures the hardness of tissues, and it has been used in clinics for detecting lesion progress, such as benign and malignant tumors. However, due to the high cost of examination and limited availability of elastic ultrasound devices, elastography is not widely used in primary medical facilities in rural areas. To address this issue, a deep learning approach called the multiscale elastic image synthesis network (MEIS-Net) was proposed, which utilized the multiscale learning to synthesize elastic images from ultrasound data instead of traditional ultrasound elastography in virtue of elastic deformation. The method integrates multi-scale features of the prostate in an innovative way and enhances the elastic synthesis effect through a fusion module. The module obtains B-mode ultrasound and elastography feature maps, which are used to generate local and global elastic ultrasound images through their correspondence. Finally, the two-channel images are synthesized into output elastic images. To evaluate the approach, quantitative assessments and diagnostic tests were conducted, comparing the results of MEIS-Net with several deep learning-based methods. The experiments showed that MEIS-Net was effective in synthesizing elastic images from B-mode ultrasound data acquired from two different devices, with a structural similarity index of 0.74 ± 0.04. This outperformed other methods such as Pix2Pix (0.69 ± 0.09), CycleGAN (0.11 ± 0.27), and StarGANv2 (0.02 ± 0.01). Furthermore, the diagnostic tests demonstrated that the classification performance of the synthetic elastic image was comparable to that of real elastic images, with only a 3 % decrease in the area under the curve (AUC), indicating the clinical effectiveness of the proposed method.


Subject(s)
Elasticity Imaging Techniques , Male , Humans , Elasticity Imaging Techniques/methods , Ultrasonography/methods , Area Under Curve
6.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398540

ABSTRACT

Litsea cubeba, which is found widely distributed across the Asian region, functions as both an economic tree and a medicinal plant with a rich historical background. Previous investigations into its chemical composition and biological activity have predominantly centered on volatile components, leaving the study of non-volatile components relatively unexplored. In this study, we employed UPLC-HRMS technology to analyze the non-volatile components of L. cubeba branches and leaves, which successfully resulted in identifying 72 constituents. Comparative analysis between branches and leaves unveiled alkaloids, organic acids, and flavonoids as the major components. However, noteworthy differences in the distribution of these components between branches and leaves were observed, with only eight shared constituents, indicating substantial chemical variations in different parts of L. cubeba. Particularly, 24 compounds were identified for the first time from this plant. The assessment of antioxidant activity using four methods (ABTS, DPPH, FRAP, and CUPRAC) demonstrated remarkable antioxidant capabilities in both branches and leaves, with slightly higher efficacy observed in branches. This suggests that L. cubeba may act as a potential natural antioxidant with applications in health and therapeutic interventions. In conclusion, the chemical composition and antioxidant activity of L. cubeba provides a scientific foundation for its development and utilization in medicine and health products, offering promising avenues for the rational exploitation of L. cubeba resources in the future.


Subject(s)
Litsea , Oils, Volatile , Plants, Medicinal , Antioxidants/pharmacology , Antioxidants/analysis , Oils, Volatile/chemistry , Litsea/chemistry , Plant Leaves/chemistry
7.
Med Phys ; 51(3): 1763-1774, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37690455

ABSTRACT

BACKGROUND: Globally, stroke is the third most significant cause of disability. A stroke may produce motor, sensory, perceptual, or cognitive disorders that result in disability and affect the likelihood of recovery, affecting a person's ability to function. Evaluation post-stroke is critical for optimal stroke care. PURPOSE: Traditional methods for classifying the clinical disorders of cognitive and motor in stroke patients use assessment and interrogative measures, which are time-consuming, complex, and labor-intensive. In response to the current situation, this study develops an algorithm to automatically classify motor and cognitive disorders in stroke patients by 3D brain MRI to assist physicians in diagnosis. METHODS: First, radiomics and fusion features are extracted from the OAx T2 Propeller of 3D brain MRI. Then, we use 14 machine learning models and one model ensemble method to predict Fugl-Meyer and MMSE levels of stroke patients. Next, we evaluate the models using accuracy, recall, f1-score, and area under the curve (AUC). Finally, we employ SHAP to explain the output of the model. RESULTS: The best predictive models come from Random Forest (RF) Classifier with fusion features in cognitive classification and Linear Discriminant Analysis (LDA) with radiomics features in motor classification. The highest accuracies are 92.0 and 82.5% for cognitive and motor disorders. CONCLUSIONS: MRI brain maps can classify the cognitive and motor disorders of stroke patients. Radiomics features demonstrate its merits. The proposed algorithms with MRI images can efficiently assist physicians in diagnosing the cognitive and motor disorders of stroke patients in clinical practice. Additionally, this lessens labor costs, improves diagnostic effectiveness, and avoids the subjective difference that comes with manual assessment.


Subject(s)
Motor Disorders , Stroke , Humans , Motor Disorders/diagnostic imaging , Motor Disorders/etiology , Magnetic Resonance Imaging , Neuroimaging , Machine Learning , Stroke/complications , Stroke/diagnostic imaging , Cognition
8.
Adv Healthc Mater ; 13(10): e2303582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160261

ABSTRACT

Despite their unique characteristics, 2D MXenes with sole photothermal conversion ability are required to explore their superfluous abilities in biomedicine. The small-molecule-based chemotherapeutics suffer from various shortcomings of time-consuming and expensiveness concerning theoretical and performance (preclinical/clinical) checks. This study demonstrates the fabrication of Ti3C2 MXene nanosheets (TC-MX NSs) and subsequent decoration with transition metal oxides, that is, copper oxide (Cu2O/MX, CO-MX NCs) as drugless nanoarchitectonics for synergistic photothermal (PTT)-chemodynamic therapeutic (CDT) efficacies. Initially, the monolayer/few-layered TC-MX NSs are prepared using the chemical etching-assisted ultrasonic exfoliation method and then deposited with Cu2O nanoconstructs using the in situ reduction method. Further, the photothermal ablation under near-infrared (NIR)-II laser irradiation shows PTT effects of CO-MX NCs. The deposited Cu2O on TC-MX NSs facilitates the release of copper (Cu+) ions in the acidic microenvironment intracellularly for Fenton-like reaction-assisted CDT effects and enriched PTT effects synergistically. Mechanistically, these deadly free radicals intracellularly imbalance the glutathione (GSH) levels and result in mitochondrial dysfunction, inducing apoptosis of 4T1 cells. Finally, the in vivo investigations in BALB/c mice confirm the substantial ablation of breast carcinoma. Together, these findings demonstrate the potential synergistic PTT-CDT effects of the designed CO-MX NCs as drugless nanoarchitectonics against breast carcinoma.


Subject(s)
Breast Neoplasms , Nanoparticles , Neoplasms , Animals , Mice , Humans , Female , Copper/pharmacology , Oxides/pharmacology , Apoptosis , Glutathione , Mice, Inbred BALB C , Cell Line, Tumor , Hydrogen Peroxide , Tumor Microenvironment
9.
Ultrasonics ; 135: 107124, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37541030

ABSTRACT

Compounded plane wave imaging (CPWI) allows high-frame-rate measurement and has been one of the most promising modalities for real-time brain imaging. However, ultrasonic brain imaging using the CPWI modality is usually performed with a worn thin or removal of the skull layer. Otherwise, the skull layer is expected to distort the ultrasonic wavefronts and significantly decrease intracranial imaging quality. The motivation of this study is to investigate a CPWI method for transcranial brain imaging with the skull layer. A coordinate transformation ray-tracing (CTRT) approach was proposed to track the distorted ultrasonic wavefronts and calculate the time delays for the ultrasound plane wave passing through the skull layer. With an accurate correction for the time delays in beamforming, the CTRT-based CPWI could achieve high-quality intracranial images with the presence of skulls. The proposed CTRT-based CPWI method was verified using a simplified three-layer transcranial model. The full-wave simulation demonstrated that CTRT could accurately (i.e., relative percentage error less than0.18%) track the distorted transmitting wavefront through skull. Compared with the CPWI without aberration correction, the CTRT-based CPWI provided high-quality intracranial imaging and could accurately localize intracranial point scatterers; specifically, positioning error decreases from 0.5 mm to 0.1 mm on average in the axial direction and from 0.7 mm to 0.1 mm on average in the lateral direction. As the compounded angles increased in the CTRT-based CPWI, the contrast improved by 16.2 dB on average for the region of interest, and the array performance indicator (representing resolution) decreased by 4.0 on average for the intracranial point scatterers. The CTRT is of low computational cost compared with full wave simulation. This study suggested that the proposed CTRT-based CPWI might have the potential for real-time and non-invasive transcranial aberration-corrected imaging.


Subject(s)
Brain , Skull , Ultrasonography , Brain/diagnostic imaging , Skull/diagnostic imaging , Phantoms, Imaging , Ultrasonics
10.
Front Neurol ; 14: 1179896, 2023.
Article in English | MEDLINE | ID: mdl-37602249

ABSTRACT

Background: Brain gray matter alterations in patients with trigeminal neuralgia (TN) have been detected in prior neuroimaging studies, but the results are heterogeneous. The current study conducted coordinate-based meta-analyses across neuroimaging studies, aiming to find the pattern of brain anatomic and functional alterations in patients with TN. Methods: We performed a systematic literature search of PubMed, Embase, and Web of Science to identify relevant publications. A multimodal meta-analysis for whole-brain voxel-based morphometry (VBM) studies and functional imaging studies in TN was performed using anisotropic effect size-based signed differential mapping. Results: The meta-analysis comprised 10 VBM studies with 398 TN patients and 275 healthy controls, and 13 functional magnetic resonance imaging studies with 307 TN patients and 264 healthy controls. The multimodal meta-analysis showed conjoint structural and functional brain alterations in the right fusiform gyrus and inferior temporal gyrus, bilateral thalamus, left superior temporal gyrus, left insula, and inferior frontal gyrus. The unimodal meta-analysis showed decreased gray matter volume alone in the left putamen, left postcentral gyrus, and right amygdala as well as only functional abnormalities in the left cerebellum, bilateral precuneus, and left middle temporal gyrus. Conclusion: This meta-analysis revealed overlapping anatomic and functional gray matter abnormalities in patients with TN, which may help provide new insights into the neuropathology and potential treatment biomarkers of TN.

11.
Phenomics ; 3(4): 408-420, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37589024

ABSTRACT

Fluorescence labeling and imaging provide an opportunity to observe the structure of biological tissues, playing a crucial role in the field of histopathology. However, when labeling and imaging biological tissues, there are still some challenges, e.g., time-consuming tissue preparation steps, expensive reagents, and signal bias due to photobleaching. To overcome these limitations, we present a deep-learning-based method for fluorescence translation of tissue sections, which is achieved by conditional generative adversarial network (cGAN). Experimental results from mouse kidney tissues demonstrate that the proposed method can predict the other types of fluorescence images from one raw fluorescence image, and implement the virtual multi-label fluorescent staining by merging the generated different fluorescence images as well. Moreover, this proposed method can also effectively reduce the time-consuming and laborious preparation in imaging processes, and further saves the cost and time. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00094-1.

12.
Braz J Med Biol Res ; 56: e12915, 2023.
Article in English | MEDLINE | ID: mdl-37585919

ABSTRACT

Cancer patients commonly suffer from loneliness, poor spiritual status, and fear of death; however, these evaluations are rarely revealed in urological cancer patients. Thus, this study aimed to assess the loneliness, spiritual well-being, and death perception, as well as their risk factors in urological cancer patients. A total of 324 urological (including renal, bladder, and prostate) cancer patients and 100 healthy controls were included. The University of California and Los Angeles loneliness scale (UCLA-LS), functional assessment of chronic illness therapy-spiritual well-being (FACIT-Sp), and death attitude profile-revised (DAP-R) scores were evaluated. The results showed that the UCLA-LS score was higher, but the FACIT-Sp score was lower in urological cancer patients than in healthy controls. According to the DAP-R score, fear of death, death avoidance, and approaching death acceptance were elevated, but neutral acceptance was lower in urological cancer patients than in healthy controls. Among urological cancer patients, the UCLA-LS score was highest but the FACIT-Sp score was lowest in bladder cancer patients; regarding the DAP-R score, fear of death and death avoidance were highest, but approaching death acceptance was lowest in bladder cancer patients. Interestingly, single/divorced/widowed status, bladder cancer diagnosis, higher pathological grade, surgery, systemic treatment, and local treatment were independent factors for higher UCLA-LS score or lower FACIT-Sp score. In conclusion, urological cancer (especially bladder cancer) patients bear increased loneliness and reduced spiritual well-being; they also carry higher fear of death, death avoidance, and approaching death acceptance but lower neutral acceptance of death.


Subject(s)
Prostatic Neoplasms , Urinary Bladder Neoplasms , Urologic Neoplasms , Male , Humans , Loneliness , Spirituality , Surveys and Questionnaires , Risk Factors , Perception
13.
Acta Pharm Sin B ; 13(6): 2765-2777, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37425035

ABSTRACT

Oligoasthenospermia is the primary cause of infertility. However, there are still enormous challenges in the screening of critical candidates and targets of oligoasthenospermia owing to its complex mechanism. In this study, stem cell factor (SCF), c-kit, and transient receptor potential vanilloid 1 (TRPV1) biosensors were successfully established and applied to studying apoptosis and autophagy mechanisms. Interestingly, the detection limit reached 2.787 × 10-15 g/L, and the quantitative limit reached 1.0 × 10-13 g/L. Furthermore, biosensors were used to investigate the interplay between autophagy and apoptosis. Schisandrin A is an excellent candidate to form a system with c-kit similar to SCF/c-kit with a detection constant (KD) of 5.701 × 10-11 mol/L, whereas it had no affinity for SCF. In addition, it also inhibited autophagy in oligoasthenospermia through antagonizing TRPV1 with a KD of up to 4.181 × 10-10 mol/L. In addition, in vivo and in vitro experiments were highly consistent with the biosensor. In summary, high-potency schisandrin A and two potential targets were identified, through which schisandrin A could reverse the apoptosis caused by excessive autophagy during oligoasthenospermia. Our study provides promising insights into the discovery of effective compounds and potential targets via a well-established in vitro-in vivo strategy.

14.
Colloids Surf B Biointerfaces ; 227: 113387, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37285669

ABSTRACT

Cancer has emerged as one of the severe ailments due to the uncontrolled proliferation rate of cells, accounting for millions of deaths annually. Despite the availability of various treatment strategies, including surgical interventions, radiation, and chemotherapy, tremendous advancements in the past two decades of research have evidenced the generation of different nanotherapeutic designs toward providing synergistic therapy. In this study, we demonstrate the assembly of a versatile nanoplatform based on the hyaluronic acid (HA)-coated molybdenum dioxide (MoO2) assemblies to act against breast carcinoma. The hydrothermal approach-assisted MoO2 constructs are immobilized with doxorubicin (DOX) molecules on the surface. Further, these MoO2-DOX hybrids are encapsulated with the HA polymeric framework. Furthermore, the versatile nanocomposites of HA-coated MoO2-DOX hybrids are systematically characterized using various characterization techniques, and explored biocompatibility in the mouse fibroblasts (L929 cell line), as well as synergistic photothermal (808-nm laser irradiation for 10 min, 1 W/cm2) and chemotherapeutic properties against breast carcinoma (4T1 cells). Finally, the mechanistic views concerning the apoptosis rate are explored using the JC-1 assay to measure the intracellular mitochondrial membrane potential (MMP) levels. In conclusion, these findings indicated excellent photothermal and chemotherapeutic efficacies, exploring the enormous potential of MoO2 composites against breast cancer.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Animals , Mice , Phototherapy , Doxorubicin , Molybdenum/pharmacology , Neoplasms/drug therapy , Cell Line, Tumor
15.
Article in English | MEDLINE | ID: mdl-37126615

ABSTRACT

In this article, a Bayesian filtering approach to adaptively extracting the crossed time-frequency (TF) ridges of ultrasonic guided waves (GWs) and retrieving their overlapped modes is proposed. Based on the generalized non-parametric GW signal model, the phase evolution of each overlapped mode can be described by the state transition equation developed by a polynomial prediction model (PPM). When an analyzed GW in the frequency domain is viewed as the measurement equation of the states, a state space model in the frequency domain for describing the GW and its modes is established. As a result, a Bayesian filtering approach can be used to extract the crossed TF ridges and separate the overlapped modes in an analyzed GW when the mode number in the signal is known as a priori. When such a priori is unavailable, an adaptive detection method of the mode number in a GW is acquired by a non-parametric iterative adaptive estimation scheme. In this way, the proposed method can be applied to cases where an analyzed GW with unknown modes can also be extracted and separated accurately. Simulation results show that the proposed method can correctly extract the crossed TF ridges and separate the overlapped modes when the signal-to-noise ratio (SNR) is higher than -5 dB. In the steel plate experiment, the correlation coefficients of S0 , A0 , and A1 modes between the original and retrieved signals are 0.900, 0.772, and 0.915, respectively, which are over the reported results in the literature.


Subject(s)
Signal Processing, Computer-Assisted , Ultrasonics , Bayes Theorem , Ultrasonography/methods , Algorithms
16.
Ultrasonics ; 133: 107043, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37216858

ABSTRACT

Corrosion quantitative detection of plate or plate-like structure materials is crucial in industrial Non-Destructive Testing (NDT) for determining their remaining life. For doing that, a novel ultrasonic guided wave tomography method, incorporating recurrent neural network (RNN) into full waveform inversion (FWI) called as RNN-FWI, is proposed in this paper. When the wave equation of an acoustic model is solved by a forward model with the cyclic calculation units of an RNN, it is shown that the inversion of the forward model can be obtained iteratively by minimizing a waveform misfit function of quadratic Wasserstein distance between the modeled and measured data. It is also demonstrated that the gradient of the objective function can be obtained by automatic differentiation while the parameters of the waveform velocity model are updated by the adaptive momentum estimation algorithm (Adam). The U-Net deep image prior (DIP) is used as the velocity model regularization in each iteration. The final thickness maps of the plate or plate-like structure materials shown can be archived by the dispersion characteristics of guided waves. Both the numerical simulation and experimental results show that the proposed RNN-FWI tomography method performs better than the conventional time-domain FWI in terms of convergence rate, initial model requirement, and robustness.

17.
Biomed Pharmacother ; 162: 114643, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37031496

ABSTRACT

Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Drug Resistance, Multiple , ATP-Binding Cassette Transporters/metabolism , Neoplasms/drug therapy , Pharmaceutical Preparations
18.
Pharm Biol ; 61(1): 598-609, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37013944

ABSTRACT

CONTEXT: Sinisan (SNS) has been used to treat psychosomatic diseases of the digestive system. But little is known about how SNS affects water immersion restraint stress (WIRS). OBJECTIVE: To study the effects of SNS on colonic tissue injury in the WIRS model. MATERIALS AND METHODS: Forty-eight Kunming (KM) mice were randomized into 6 groups (n = 8): The control and WIRS groups receiving deionized water; the SNS low-dose (SL, 3.12 g/kg/d), SNS middle-dose (SM, 6.24 g/kg/d), SNS high-dose (SH, 12.48 g/kg/d), and diazepam (DZ, 5 mg/kg/d) groups; each with two daily administrations for 5 consecutive days. The 5 treatment groups were subjected to WIRS for 24 h on day 6. The effects of SNS on colon tissue injury caused by WIRS were assessed by changes in colon histology, inflammatory cytokines, brain-gut peptides, and tight junction (TJ) proteins levels. 16S rRNA gene sequencing was used to detect the regulation of the gut microbiota. RESULTS: SNS pretreatment significantly reduced TNF-α (0.75- to 0.81-fold), IL-6 (0.77-fold), and IFN-γ (0.69-fold) levels; and increased TJ proteins levels, such as ZO-1 (4.06- to 5.27-fold), claudin-1 (3.33- to 5.14-fold), and occludin (6.46- to 11.82-fold). However, there was no significant difference between the levels of substance P (SP) and vasoactive intestinal peptide (VIP) in the control and WIRS groups. SNS regulated the composition of gut microbiota in WIRS mice. CONCLUSION: The positive effects of SNS on WIRS could provide a theoretical basis to treat stress-related gastrointestinal disorders.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Intestinal Mucosa , Immersion , RNA, Ribosomal, 16S , Colon/pathology , Tight Junction Proteins/metabolism , Water/pharmacology
19.
Lipids Health Dis ; 22(1): 33, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882837

ABSTRACT

PURPOSE: Aerobic exercise has shown beneficial effects in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). Nevertheless, the regulatory mechanism is not turely clear. Therefore, we aim to clarify the possible mechanism by investigating the effects of aerobic exercise on NAFLD and its mitochondrial dysfunction. METHODS: NAFLD rat model was established by feeding high fat diet. and used oleic acid (OA) to treat HepG2 cells. Changes in histopathology, lipid accumulation, apoptosis, body weight, and biochemical parameters were assessed. In addition, antioxidants, mitochondrial biogenesis and mitochondrial fusion and division were assessed. RESULTS: The obtained in vivo results showed that aerobic exercise significantly improved lipid accumulation and mitochondrial dysfunction induced by HFD, activated the level of Sirtuins1 (Srit1), and weakened the acetylation and activity of dynamic-related protein 1 (Drp1). In vitro results showed that activation of Srit1 inhibited OA-induced apoptosis in HepG2 cells and alleviated OA-induced mitochondrial dysfunction by inhibiting Drp1 acetylation and reducing Drp1 expression. CONCLUSION: Aerobic exercise alleviates NAFLD and its mitochondrial dysfunction by activating Srit1 to regulate Drp1 acetylation. Our study clarifies the mechanism of aerobic exercise in alleviating NAFLD and its mitochondrial dysfunction and provides a new method for adjuvant treatment of NAFLD.


Subject(s)
Dynamins , Non-alcoholic Fatty Liver Disease , Sirtuin 1 , Animals , Humans , Rats , Acetylation , Apoptosis , Dynamins/genetics , Hep G2 Cells , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/therapy , Oleic Acid , Sirtuin 1/genetics , Physical Conditioning, Animal , Hepatocytes
20.
Int J Occup Saf Ergon ; 29(4): 1532-1541, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36522854

ABSTRACT

This study analyzes structural characteristics of firefighting gloves from the perspective of style design, to investigate the impact of the fit of four types of selected firefighting gloves on firefighters' manual operation efficiency. Seventeen male college students participated in the ergonomic trial to compare manual work done with bare hands and while wearing gloves. The results showed that the participants' hand dexterity decreased after wearing firefighting gloves, but there were significant differences between different styles of gloves. As glove thickness increased, the time to complete manual work increased continuously. But the change in the participant's hand and finger length did not affect the tactile perception of gloves. The construction of fingers had an inverse significant effect on dexterity and grip performance. To enhance manual performance, it is recommended that hand length, finger length and finger girth be considered when designing firefighting gloves based on the motion characteristics of firefighting operations.


Subject(s)
Gloves, Protective , Hand , Humans , Male , Fingers , Ergonomics , Hand Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...