Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Cell Genom ; : 100605, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38981476

ABSTRACT

Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.

2.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Article in English | MEDLINE | ID: mdl-39005660

ABSTRACT

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

3.
J Clin Anesth ; 97: 111543, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954872

ABSTRACT

STUDY OBJECTIVE: We conducted this double-blinded randomized controlled trial to examine whether the combination of dexamethasone and dexmedetomidine as adjuvants of transversus abdominis plane (TAP) block could improve analgesia efficacy and duration for gastric cancer patients. DESIGN: Randomized controlled trial. SETTING: The preoperative area, operating room, postanesthesia recovery room and bed ward. PATIENTS: A total of 312 adult patients (104 per group) with gastric cancer were included. INTERVENTIONS: Patients received bilateral subcostal TAP block with three different anesthetics (60 ml 0.25% ropivacaine added with 10 mg dexamethasone and 1 µg·kg-1 dexmedetomidine [A] or 10 mg dexamethasone [B] or 1 µg·kg-1 dexmedetomidine [C]). MEASUREMENTS: The primary outcome was the incidence of moderate-to-severe pain 24 h on movement. Secondary outcomes included incidence of moderate-to-severe pain, pain score, opioids use, recovery quality and adverse events. MAIN RESULTS: The incidence of moderate-to-severe pain on movement 24 h postoperatively of group A was significantly lower than group B (45.19% vs 63.46%; RR 0.71; 95% CI, 0.55 to 0.92) and group C (45.19% vs 73.08%, RR 0.62; 95% CI, 0.49 to 0.79). The median moving pain scores decreased significantly at 24 h (3.00 [3.00,5.00] vs 4.00 [3.00,6.00] vs 4.00 [3.00,5.00]; P < 0.001). There were significant differences in the opioids consumption within the first 24 h (27.5 [17.0,37.2] vs 30.0 [20.0,42.0] vs 32.0 [25.0,44.0] mg; P = 0.01) and the duration to first rescue analgesia (65.5 ± 26.7 vs 45.9 ± 34.5 vs 49.2 ± 27.2 h; P = 0.04). CONCLUSIONS: The combination with dexamethasone and dexmedetomidine as adjuvants for TAP block reduced the incidence of moderate-to-severe pain and pain score both on movement and at rest at 24 h with prolonged duration to first rescue analgesia after gastric cancer surgery. TRIAL REGISTRATION NUMBER: ChiCTR2000037981.

4.
Nat Commun ; 15(1): 5021, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866768

ABSTRACT

A pressing challenge in spatially resolved transcriptomics (SRT) is to benchmark the computational methods. A widely-used approach involves utilizing simulated data. However, biases exist in terms of the currently available simulated SRT data, which seriously affects the accuracy of method evaluation and validation. Herein, we present scCube ( https://github.com/ZJUFanLab/scCube ), a Python package for independent, reproducible, and technology-diverse simulation of SRT data. scCube not only enables the preservation of spatial expression patterns of genes in reference-based simulations, but also generates simulated data with different spatial variability (covering the spatial pattern type, the resolution, the spot arrangement, the targeted gene type, and the tissue slice dimension, etc.) in reference-free simulations. We comprehensively benchmark scCube with existing single-cell or SRT simulators, and demonstrate the utility of scCube in benchmarking spot deconvolution, gene imputation, and resolution enhancement methods in detail through three applications.


Subject(s)
Computer Simulation , Gene Expression Profiling , Software , Transcriptome , Gene Expression Profiling/methods , Computational Biology/methods , Humans , Single-Cell Analysis/methods , Animals , Algorithms
5.
Fundam Res ; 4(3): 589-602, 2024 May.
Article in English | MEDLINE | ID: mdl-38933191

ABSTRACT

Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.

6.
Small ; : e2402765, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940416

ABSTRACT

Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.

7.
J Colloid Interface Sci ; 672: 776-786, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38870768

ABSTRACT

Coating and single crystal are two common strategies for cobalt-free nickel-rich layered oxides to solve its poor rate performance and cycle stability. However, the action mechanism of different modification protocols to suppress the attenuation are unclear yet. Herein, the Li2MoO4 layer-coated polycrystalline LiNi0.9Mn0.1O2 (1.0 %-Mo + NM91) and single crystal LiNi0.9Mn0.1O2 (SC-NM91) are prepared to investigate this difference, respectively. By focusing on the interior of particles, the relationship between structure evolution and electrochemical behavior is systematically studied, and the intrinsic mechanism of coating/single-crystallization modifications on suppressing the attenuation is clarified. The results show that microcracks in LiNi0.9Mn0.1O2 (NM91) are the main culprit leading to the rate capability decay, and the coating can effectively prevent the radial diffusion of microcracks from the center to surface, inhibiting the generation of surface side reactions. Therefore, the coating has a more advantage in improving the rate performance at 5.0C, the discharge capacity of 1.0 %-Mo + NM91 (130.6 mAh/g) is 7.9 % higher than that of SC-NM91 (121.0 mAh/g). In contrast, the single-crystallization can effectively prevent the formation of intergranular cracks arising from the anisotropic stress in NM91, which causes the severe cycle degradation. Correspondingly, the grain boundary-free SC-NM91 shows superior cyclability. The capacity retention rate of SC-NM91 (80.8 %) at 0.2C after 100cycles is 6.3 % higher than that of 1.0 %-Mo + NM91 (74.5 %). This work concludes the effect difference of different modification methods on enhancing the electrochemical performance, which provides theoretical and technical guidance for the optimized and targeted modification design in the cobalt-free high nickel cathode materials.

8.
Research (Wash D C) ; 7: 0366, 2024.
Article in English | MEDLINE | ID: mdl-38783913

ABSTRACT

Muscle strength (MS) is related to our neural and muscle systems, essential for clinical diagnosis and rehabilitation evaluation. Although emerging wearable technology seems promising for MS assessment, problems still exist, including inaccuracy, spatiotemporal differences, and analyzing methods. In this study, we propose a wearable device consisting of myoelectric and strain sensors, synchronously acquiring surface electromyography and mechanical signals at the same spot during muscle activities, and then employ a deep learning model based on temporal convolutional network (TCN) + Transformer (Tcnformer), achieving accurate grading and prediction of MS. Moreover, by combining with deep clustering, named Tcnformer deep cluster (TDC), we further obtain a 25-level classification for MS assessment, refining the conventional 5 levels. Quantification and validation showcase a patient's postoperative recovery from level 3.2 to level 3.6 in the first few days after surgery. We anticipate that this system will importantly advance precise MS assessment, potentially improving relevant clinical diagnosis and rehabilitation outcomes.

9.
J Biol Chem ; 300(7): 107414, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810697

ABSTRACT

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.

10.
Cell Rep Med ; 5(6): 101568, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38754419

ABSTRACT

Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.


Subject(s)
Gene Regulatory Networks , Single-Cell Analysis , Gene Regulatory Networks/drug effects , Humans , Single-Cell Analysis/methods , Medulloblastoma/genetics , Medulloblastoma/drug therapy , Medulloblastoma/pathology , RNA-Seq/methods , Animals , Depressive Disorder, Major/genetics , Depressive Disorder, Major/drug therapy , Transcriptome/genetics , Transcriptome/drug effects , Gene Expression Profiling/methods , Macrophages/metabolism , Macrophages/drug effects , Myocardial Infarction/genetics , Myocardial Infarction/drug therapy , Single-Cell Gene Expression Analysis
11.
Anal Methods ; 16(19): 3099-3108, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38695127

ABSTRACT

The CRISPR-Cas system has been found to be extremely sensitive and there is an urgent demand to extend its potential in bioassays. Herein, we developed a novel nanobiosensor to detect the human papillomavirus 16 genes (HPV-16 DNA), which is triggered by CRISPR-Cas12a to amplify the fluorescence signal by metal-enhanced fluorescence (CAMEF). Along with the changing of the fluorescence signal, the aggregation of the substrate of MEF also leads to a change in the color of the mixture solution, enabling dual signal detection with the fluorescence and the naked eye. Furthermore, the designed CAMEF probe was verified to detect the HPV-16 DNA accurately and reliably in biological samples. Triggered by the CRISPR system, the designed CAMEF probe allows quantitative detection of the HPV-16 DNA in the wide range of 10-500 pM. Owing to the MEF, the fluorescence signal of the CAMEF probe was significantly amplified with the detection limit as low as 1 pM. Besides, we can determine the concentration of HPV-16 DNA simply by the naked eye, which also drastically reduces the possibility of false-positive signals. Theoretically, the target ssDNA could be any strand of DNA obtained by designing the crRNA sequence in the CRISPR-Cas system. We believe that the designed CAMEF sensor can present a reliable approach for the accurate detection of low amounts of target ssDNA in complex biological samples.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Colorimetry , DNA, Viral , Human papillomavirus 16 , CRISPR-Cas Systems/genetics , Human papillomavirus 16/genetics , Colorimetry/methods , Humans , DNA, Viral/analysis , DNA, Viral/genetics , Biosensing Techniques/methods , Limit of Detection , Fluorescence , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods
12.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38713167

ABSTRACT

Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in FF, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia. However, the impact of FF-MAS on GCs within follicles has not been explored so far. In this study, we uncovered a novel role of FF-MAS in facilitating GC survival under hypoxic conditions by inhibiting STAT4 expression. We found that STAT4 expression was upregulated in porcine GCs exposed to 1% O2. Both gain and loss of function assays confirmed that STAT4 was required for cell apoptosis under hypoxia conditions, and that the GC apoptosis caused by hypoxia was markedly attenuated following FF-MAS treatment through inhibition of STAT4 expression. Correlation analysis in vivo revealed that GC apoptosis was associated with increased STAT4 expression, while the FF-MAS content in follicular fluid was negatively correlated with STAT4 mRNA levels and cell apoptosis. These findings elucidate a novel role of FF-MAS-mediated protection of GCs by inhibiting STAT4 expression under hypoxia, which might contribute to the mechanistic understanding of follicular development.


Granulosa cells (GCs) influence follicle growth and development, with their proliferation and differentiation promoting follicle development and ovulation, while their programmed cell death and degeneration trigger follicular atresia. In this study, to investigate the effect of FF-MAS on GCs of follicles, we performed gene expression profiling in the domestic pig (Sus scrofa). We discovered STAT4 is required for GC apoptosis under hypoxia conditions both in vitro and in vivo and FF-MAS prevents porcine ovarian granulosa cells from hypoxia-induced apoptosis via inhibiting STAT4 expression.


Subject(s)
Apoptosis , Follicular Fluid , Granulosa Cells , Meiosis , STAT4 Transcription Factor , Animals , Granulosa Cells/drug effects , Female , Apoptosis/drug effects , Swine , Follicular Fluid/chemistry , Meiosis/drug effects , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Sterols , Hypoxia/veterinary
13.
Heliyon ; 10(9): e29895, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694126

ABSTRACT

While immersive shopping has injected new vitality into China's e-commerce, it has also resulted in consumers' over-reliance on online shopping. Psychological studies have linked online shopping addiction with depression, but business practices challenge this conclusion. This study, grounded in addiction theory, developed a theoretical model, and conducted an online survey with 214 live-streaming shoppers using structural equation modeling for validation. The primary focus was on determining whether consumers truly become addicted to online shopping in the four stages of the addiction model. The study unveils the process of consumers becoming addicted to online shopping. It explores the moderating role of perceived risk in the relationship between utilitarian and hedonic purchases and online shopping addiction. The findings suggest that through tactics such as traffic promotion, traffic trapping, anchor feature utilization, and incorporation of consumer aesthetics, merchants may induce utilitarian and hedonic purchases, leading to addiction to live-streaming shopping among consumers. Furthermore, perceived risk significantly and negatively moderates the relationship between utilitarian purchases and online shopping addiction. Our research indicates that merchants intentionally create external stimuli, enticing consumers to indulge in online shopping, suggesting that online shopping addiction is not merely a simple psychological state but may be influenced by external factors. This study provides novel insights into the phenomenon of online shopping addiction while offering valuable recommendations for consumers seeking to avoid succumbing to its allure.

14.
Biosens Bioelectron ; 259: 116412, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795498

ABSTRACT

While there is significant potential for DNA machine-built enzyme-free fluorescence biosensors in the imaging analysis of live biological samples, they persist certain shortcomings. These encompass a deficiency of signal enrichment within a singular interface, uncontrolled premature activation during bio-delivery, and a slow reaction rate due to free nucleic acid collisions. In this contribution, we are committed to resolving the above challenges. Firstly, a single-interface-integrated domino-like driving amplification is constructed. In this conception, a specific target acts as the domino promotor (namely the energy source), initiating a cascading chain reaction that grafts onto a singular interface. Next, an 808 nm near-infrared (NIR) light-excited up-converting luminescence-induced light-activatable biosensing technique is introduced. By locking the target-specific identification segment with a photo-cleavage connector, the up-converted ultraviolet emission can activate target binding in a completely controlled manner. Moreover, a fast reaction rate is achieved by confining nucleic acid collisions within the surface of a DNA wire nano-scaffold, leading to a substantial enhancement in local contact concentration (30.8-fold increase, alongside a 15 times elevation in rate). When a non-coding microRNA (miRNA-221) is positioned as the model low-abundance target for proof-of-concept validation, our intelligent DNA machine demonstrates ultra-high sensitivity (with a limit of detection down to 62.65 fM) and good specificity for this hepatic malignant tumor-associated biomarker in solution detection. Going further, it is worth highlighting that the biosensing system can be employed to carry out high-performance imaging analysis in live bio-samples (ranging from the cellular level to the nude mouse body), thereby propelling the field of DNA machines in disease diagnosis.


Subject(s)
Biosensing Techniques , DNA , Infrared Rays , MicroRNAs , Biosensing Techniques/methods , Humans , DNA/chemistry , DNA/genetics , MicroRNAs/analysis , MicroRNAs/genetics , Animals , Mice , Nucleic Acid Amplification Techniques/methods , Optical Imaging/methods , Nanostructures/chemistry
15.
J Mater Chem B ; 12(18): 4361-4374, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639047

ABSTRACT

Repair of large bone defects is one of the clinical problems that have not yet been fully solved. The dynamic balance of bone tissue is regulated by many biological, chemical and physical environmental factors. Simulating the microenvironment of bone tissue in the physiological state through biomimetic materials is an important development direction of tissue engineering in recent years. With the deepening of research, it has been found that when bone tissue is damaged, its surrounding magnetoelectric microenvironment is subsequently destroyed, and providing a magnetoelectric microenvironment in the biomimetic state will be beneficial to promote bone repair. This review describes the piezoelectric effect of natural bone tissue with magnetoelectric stimulation for bone regeneration, provides a detailed account of the historical development of magnetoelectric composites and the current magnetoelectric composites that are most commonly utilized in the field of tissue engineering. Besides, the hypothesized mechanistic pathways through which magnetoelectric composite materials promote bone regeneration are critically examined, including the enhancement of osteogenesis, promotion of cell adhesion and angiogenesis, modulation of bone immunity, and promotion of nerve regeneration.


Subject(s)
Bone Regeneration , Tissue Engineering , Humans , Animals , Osteogenesis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
16.
Diagnostics (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611671

ABSTRACT

(1) Background: Transsphenoidal pituitary surgery can be conducted via microscopic or endoscopic approaches, and there has been a growing preference for the latter in recent years. However, the occurrence of rare complications such as postoperative sinusitis remains inadequately documented in the existing literature. (2) Methods: To address this gap, we conducted a comprehensive retrospective analysis of medical records spanning from 2018 to 2023, focusing on patients who underwent transsphenoidal surgery for pituitary neuroendocrine tumors (formerly called pituitary adenoma). Our study encompassed detailed evaluations of pituitary function and MRI imaging pre- and postsurgery, supplemented by transnasal endoscopic follow-up assessments at the otolaryngology outpatient department. Risk factors for sinusitis were compared using univariate and multivariate logistic regression analyses. (3) Results: Out of the 203 patients included in our analysis, a subset of 17 individuals developed isolated sphenoid sinusitis within three months postoperation. Further scrutiny of the data revealed significant associations between certain factors and the occurrence of postoperative sphenoid sinusitis. Specifically, the classification of the primary tumor emerged as a notable risk factor, with patients exhibiting nonfunctioning pituitary neuroendocrine tumors with 3.71 times the odds of developing sinusitis compared to other tumor types. Additionally, postoperative cortisol levels demonstrated a significant inverse relationship, with lower cortisol levels correlating with an increased risk of sphenoid sinusitis postsurgery. (4) Conclusions: In conclusion, our findings underscore the importance of considering tumor classification and postoperative cortisol levels as potential predictors of postoperative sinusitis in patients undergoing transsphenoidal endoscopic pituitary surgery. These insights offer valuable guidance for clinicians in identifying at-risk individuals and implementing tailored preventive and management strategies to mitigate the occurrence and impact of sinusitis complications in this patient population.

17.
Plant Dis ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679591

ABSTRACT

Cucumber green mottle mosaic virus (CGMMV) was first discovered on cucumber in the United Kingdom in 1935 (Ainsworth, 1935), and has spread worldwide except to Antarctica (Jones, 2021). Given its extensive damage, it is considered an important pathogen on global cucurbit plants and fruit crops. In China, CGMMV was first reported on pumpkin in Guangxi Province in 2003 (Qin et al., 2005), and occurred on 34 plants species across 23 provinces (Liu et al., 2016). Cynanchum rostellatum is a member of the family Apocynaceae. In July 2021, leaves of C. rostellatum exhibiting virus-like symptoms (yellowing, severe crinkling, deformation) were observed and collected in Liaoning Province, China. Aphids were also observed on the leaves and stems (Fig. S1) of the plants and were collected. Total RNA was extracted from diseased leaves following the CTAB method, followed by the depletion of ribosomal RNAs (rRNA) with TIANSeq rRNA Depletion Kit (Tiangen, China). The RNAs were, then processed into a DNBSEQ LncRNA-Seq library, and sequenced on the MGISEQ-2000 platform at BGI Genomics (Wuhan, China). A total of 106.98 M clean reads were obtained after data filtering using SOAPnuke software (BGI, China). The clean reads were assembled into contigs using CLC Genomics Workbench 11 (Qiagen, USA) and Trinity v2.0.6 (Haas et al., 2013). A contig (4,760 reads, average coverage:73.76) of 6,391 nucleotides was found to share the highest sequence identity (99.83%) with CGMMV isolate GDLZ (MK933286), irrespective of other virus-like contigs related to Polerovirus and Totivirus. Based on the genome of GDLZ isolate, seven specific primers (Table S1) were designed to amplify the full viral genomic sequences using a PrimeScriptTM One-Step RT-PCR Kit. Seven expected amplicons were obtained, cloned, and sequenced. The complete genome was determined to be 6,423 nucleotides (GenBank accession number OR854819) in length and designated as LNMJ isolate. LNMJ shared 96.8%-99.7% nucleotide sequence identities with CGMMV isolates from China. Phylogenetic analysis based on the complete genome sequences showed that LNMJ clustered together with CGMMV isolates hn (GenBank accession number KC851866), GDLZ (GenBank accession number MK933286), and JD8 (GenBank accession number KM873784) from China. The specific primers LM-TJ-3F/3R were designed to determine the virus-symptom association for LNMJ, and all twelve symptomatic C. rostellatum plants collected from fields tested positive for LNMJ. Two out of six randomly selected aphids from the diseased plants also tested positive. To further prove its infectivity, LNMJ was inoculated mechanically onto ten healthy Nicotiana benthamiana plants, and the results indicated a high infection rate of 80% (8/10), at 30 days post-inoculation despite no distinct symptoms observed. To our knowledge, this is the first report of the natural infection of C. rostellatum plants with CGMMV. C. rostellatum is a widespread herb in China (Wei et al., 2019) and more surveys are needed to determine the distribution of CGMMV. The habitats of C. rostellatum span diverse agroecological zones, and thus our study underscores the potential spillover of CGMMV to neighboring crops as a significant risk.

18.
Sci Adv ; 10(17): eadn0947, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669338

ABSTRACT

Organic electrosynthesis in aqueous media is presently hampered by the poor solubility of many organic reactants and thus low purity of liquid products in electrolytes. Using the electrooxidation of benzyl alcohol (BA) as a model reaction, we present a "sandwich-type" organic-solid-water (OSW) system, consisting of BA organic phase, KOH aqueous electrolyte, and porous anodes with Janus-like superwettability. The system allows independent diffusion of BA molecules from the organic phase to electrocatalytic active sites, enabling efficient electrooxidation of high-concentration BA to benzaldehyde (97% Faradaic efficiency at ~180 mA cm-2) with substantially reduced ohmic loss compared to conventional solid-liquid systems. The confined organic-water boundary within the electrode channels suppresses the interdiffusion of molecules and ions into the counterphase, thus preventing the hydration and overoxidation of benzaldehyde during long-term electrocatalysis. As a result, the direct production of high-purity benzaldehyde (91.7%) is achieved in a flow cell, showcasing the effectiveness of electrocatalysis over OSW interfaces for the one-step synthesis of high-purity organic compounds.

19.
Nano Lett ; 24(17): 5277-5283, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624178

ABSTRACT

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.

20.
Anal Chem ; 96(18): 7101-7110, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38663376

ABSTRACT

While DNA amplifier-built nanobiosensors featuring a DNA polymerase-free catalytic hairpin assembly (CHA) reaction have shown promise in fluorescence imaging assays within live biosystems, challenges persist due to unsatisfactory precision stemming from premature activation, insufficient sensitivity arising from low reaction kinetics, and poor biostability caused by endonuclease degradation. In this research, we aim to tackle these issues. One aspect involves inserting an analyte-binding unit with a photoinduced cleavage bond to enable a light-powered notion. By utilizing 808 nm near-infrared (NIR) light-excited upconversion luminescence as the ultraviolet source, we achieve entirely a controllable sensing event during the biodelivery phase. Another aspect refers to confining the CHA reaction within the finite space of a DNA self-assembled nanocage. Besides the accelerated kinetics (up to 10-fold enhancement) resulting from the nucleic acid restriction behavior, the DNA nanocage further provides a 3D rigid skeleton to reinforce enzymatic resistance. After selecting a short noncoding microRNA (miRNA-21) as the modeled low-abundance sensing analyte, we have verified that the innovative NIR light-powered and DNA nanocage-confined CHA nanobiosensor possesses remarkably high sensitivity and specificity. More importantly, our sensing system demonstrates a robust imaging capability for this cancer-related universal biomarker in live cells and tumor-bearing mouse bodies, showcasing its potential applications in disease analysis.


Subject(s)
Biosensing Techniques , DNA , Infrared Rays , MicroRNAs , MicroRNAs/analysis , Humans , Biosensing Techniques/methods , Animals , DNA/chemistry , Mice , Optical Imaging , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...