Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273376

ABSTRACT

The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.


Subject(s)
Cold Temperature , Immunoglobulin G , Plant Extracts , Plant Roots , Salvia miltiorrhiza , Animals , Salvia miltiorrhiza/chemistry , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Immunoglobulin G/blood , Plant Roots/chemistry , Male , Abietanes/pharmacology , Immunosuppression Therapy/methods , Immune Tolerance/drug effects
2.
Heliyon ; 10(14): e34460, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39114003

ABSTRACT

Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.

3.
Cancer Cell Int ; 24(1): 291, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152428

ABSTRACT

BACKGROUND: Increased prevalence of hepatocellular carcinoma (HCC) remains a global health challenge. HCC chemoresistance is a clinical obstacle for its management. Aberrant miRNA expression is a hallmark for both cancer progression and drug resistance. However, it is unclear which miRNAs are involved in HCC chemoresistance. METHODS: MicroRNA microarray analysis revealed a differential expression profile of microRNAs between the hepatocellular carcinoma HA22T cell line and the HDACi-R cell line, which was validated by quantitative real-time PCR (qRT-PCR). To determine the biological function of miR-342-5p and the mechanism of the microRNA-342-5p/CFL1 axis in hepatocellular carcinoma HDACi resistance, loss- and gain-of-function studies were conducted in vitro. RESULTS: Here we demonstrated the molecular mechanism of histone deacetylase inhibitor (HDACi) resistance in HCC. Differential miRNA expression analysis showed significant down regulation of miR-342-5p in HDACi-R cells than in parental HA22T cells. Mimics of miR-342-5p enhanced apoptosis through upregulation of Bax, cyto-C, cleaved-caspase-3 expressions with concomitant decline in anti-apoptotic protein (Bcl-2) in HDACi-R cells. Although HDACi did not increase cell viability of HDACi-R, overexpression of miR-342-5p decreased cofilin-1 expression, upregulated reactive oxygen species (ROS) mediated apoptosis, and sensitized HDACi-R to HDACi in a dose-dependent manner. CONCLUSION: Our findings demonstrated the critical role of miR-342-5p in HDACi resistance of HCC and that this mechanism might be attributed to miR-342-5p/cofilin-1 regulation.

4.
Pathology ; 56(5): 671-680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852040

ABSTRACT

Flow cytometry can be applied in the detection of fluorescence in situ hybridisation (FISH) signals to efficiently analyse chromosomal aberrations. However, such interphase chromosome (IC) Flow-FISH protocols are currently limited to detecting a single colour. Furthermore, combining IC Flow-FISH with conventional multicolour flow cytometry is difficult because the DNA-denaturation step in FISH assay also disrupts cellular integrity and protein structures, precluding subsequent antigen-antibody binding and hindering concurrent labeling of surface antigens and FISH signals. We developed a working protocol for concurrent multicolour flow cytometry detection of nuclear IC FISH signals and cell surface markers. The protocol was validated by assaying sex chromosome content of blood cells, which was indicative of chimerism status in patients who had received sex-mismatched allogeneic haematopoietic stem cell transplants (allo-HSCT). The method was also adapted to detect trisomy 12 in chronic lymphocytic leukaemia (CLL) subjects. We first demonstrated the feasibility of this protocol in detecting multiple colours and concurrent nuclear and surface signals with high agreement. In clinical validation experiments, chimerism status was identified in clinical samples (n=56) using the optimised IC Flow-FISH method; the results tightly corresponded to those of conventional slide-based FISH (R2=0.9649 for XX cells and 0.9786 for XY cells). In samples from patients who received sex-mismatched allo-HSCT, individual chimeric statuses in different lineages could be clearly distinguished with high flexibility in gating strategies. Furthermore, in CLL samples with trisomy 12, this method could demonstrate that enriched trisomy 12 FISH signal was present in B cells rather than in T cells. Finally, by performing combined labelling of chromosome 12, X chromosome, and surface markers, we could detect rare residual recipient CLL cells with trisomy 12 after allo-HSCT. This adaptable protocol for multicolour and lineage-specific IC Flow-FISH advances the technique to allow for its potential application in various clinical contexts where conventional FISH assays are currently being utilised.


Subject(s)
Flow Cytometry , In Situ Hybridization, Fluorescence , Interphase , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , In Situ Hybridization, Fluorescence/methods , Flow Cytometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Female , Male , Hematopoietic Stem Cell Transplantation , Trisomy/diagnosis , Trisomy/genetics , Middle Aged , Chromosomes, Human, Pair 12/genetics
5.
Cell Biochem Biophys ; 82(2): 1325-1333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809348

ABSTRACT

Bladder cancer stands as a prevailing neoplasm among men globally, distinguished for its pronounced malignancy attributed to invasiveness and metastatic proclivity. Tannic acid (TA), an organic compound in many plants, has garnered recent attention for its discernible anti-mutagenic attributes. This investigation endeavored to scrutinize the repercussions of TA on grade II bladder cancer, with a concerted focus on unraveling its anti-cancer mechanisms. The cytotoxic effects of TA on grade II bladder cancer cells were investigated using multiple techniques, including MTT assay, flow cytometry, TUNEL assay, and western blot. Our findings revealed that elevated concentrations of TA induced cytotoxic effects in grade II bladder cancer cells. Both flow cytometry and the TUNEL assay substantiated the dose-dependent capacity of TA to prompt apoptosis. Western blot analysis corroborated that TA treatment in bladder cancer cells resulted in the upregulation of cleaved caspase-3 expression and PARP. Furthermore, heightened TA dosage elicited an augmentation in the expression of pro-apoptotic proteins, namely Bax and Bak, alongside a reduction in the expression of the anti-apoptotic protein Bcl-2 within bladder cancer cells. This study confirms TA as a potential anticancer agent, demonstrably diminishing the viability of bladder cancer cells. TA exerts cytotoxicity through the activation of mitochondrial apoptotic pathways. Specifically, TA initiates the cleavage of PARP and caspase-3, concurrently augmenting the expression of pro-apoptotic proteins to facilitate apoptosis. Collectively, the present study indicates that TA effectively impedes the proliferation of bladder cancer cells by instigating apoptosis through the intrinsic mitochondrial pathway.


Subject(s)
Apoptosis , Cell Proliferation , Mitochondria , Tannins , Urinary Bladder Neoplasms , Humans , Tannins/pharmacology , Apoptosis/drug effects , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Polyphenols
6.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791301

ABSTRACT

Psychological stress increases risk of gastrointestinal tract diseases. However, the mechanism behind stress-induced gastrointestinal injury is not well understood. The objective of our study is to elucidate the putative mechanism of stress-induced gastrointestinal injury and develop an intervention strategy. To achieve this, we employed the restraint stress mouse model, a well-established method to study the pathophysiological changes associated with psychological stress in mice. By orally administering gut-nonabsorbable Evans blue dye and monitoring its plasma levels, we were able to track the progression of gastrointestinal injury in live mice. Additionally, flow cytometry was utilized to assess the viability, death, and inflammatory status of splenic leukocytes, providing insights into the stress-induced impact on the innate immune system associated with stress-induced gastrointestinal injury. Our findings reveal that neutrophils represent the primary innate immune leukocyte lineage responsible for stress-induced inflammation. Splenic neutrophils exhibited elevated expression levels of the pro-inflammatory cytokine IL-1, cellular reactive oxygen species, mitochondrial burden, and cell death following stress challenge compared to other innate immune cells such as macrophages, monocytes, and dendritic cells. Regulated cell death analysis indicated that NETosis is the predominant stress-induced cell death response among other analyzed regulated cell death pathways. NETosis culminates in the formation and release of neutrophil extracellular traps, which play a crucial role in modulating inflammation by binding to pathogens. Treatment with the NETosis inhibitor GSK484 rescued stress-induced neutrophil extracellular trap release and gastrointestinal injury, highlighting the involvement of neutrophil extracellular traps in stress-induced gastrointestinal inflammation. Our results suggest that neutrophil NETosis could serve as a promising drug target for managing psychological stress-induced gastrointestinal injuries.


Subject(s)
Inflammation , Neutrophils , Restraint, Physical , Stress, Psychological , Animals , Mice , Neutrophils/immunology , Neutrophils/metabolism , Stress, Psychological/complications , Stress, Psychological/immunology , Inflammation/pathology , Male , Mice, Inbred C57BL , Extracellular Traps/metabolism , Gastrointestinal Diseases/etiology , Disease Models, Animal , Reactive Oxygen Species/metabolism
7.
Tzu Chi Med J ; 36(2): 127-135, 2024.
Article in English | MEDLINE | ID: mdl-38645784

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) can cure malignant and nonmalignant hematological disorders. From 1983 to 2022, Taiwan performed more than 10,000 HSCT transplants. The Taiwan Blood and Marrow Transplantation Registry collects clinical information to gather everyone's experience and promote the advances of HSCT in Taiwan to gather everyone's experience and promote advances of HSCT in Taiwan. Compared with matched sibling donors, transplants from matched unrelated donors exhibited a trend of superior survival. In Taiwan, transplant donors showed remarkable growth from unrelated (24.8%) and haploidentical (10.5%) donors. The number of older patients (17.4%; aged ≥61 years) who underwent transplantation has increased markedly. This review summarizes several significant developments in HSCT treatment in Taiwan. First, the use of Anti-thymocyte globulin (ATG) and intravenous busulfan regimens were important risk factors for predicting hepatic sinusoidal obstruction syndrome. Second, a new, machine learning-based risk prediction scoring system for posttransplantation lymphoproliferative disorder has identified five risk factors: aplastic anemia, partially mismatched related donors, fludarabine use, ATG use, and acute skin graft-versus-host disease. Third, although the incidence of idiopathic pneumonia syndrome was low (1.1%), its mortality rate was high (58.1%). Fourth, difficult-to-treat mantle cell and T-cell lymphomas treated with autologous HSCT during earlier remission had higher survival rates. Fifth, treatment of incurable multiple myeloma with autologous HSCT showed a median progression-free survival and overall survival of 46.5 and 70.4 months, respectively. Sixth, different haploidentical transplantation strategies were compared. Seventh, caution should be taken in administering allogeneic HSCT treatment in older patients with myeloid leukemia with a Charlson Comorbidity Index ≥3 because of a higher risk of nonrelapse mortality.

8.
Int J Lab Hematol ; 46(4): 722-730, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38682289

ABSTRACT

INTRODUCTION: Platelet transfusion is a standard treatment to prevent bleeding in patients with hematological malignancies. Although transfusions can improve platelet count, their impact on platelet function remains controversial. METHODS: We conducted flow cytometry to assess platelet function before and after transfusion and performed subgroup analyses to examine differences based on blood type, corrected count increment (CCI), and platelet microparticles. RESULTS: Overall, 50 patients who received prophylactic platelet transfusion were enrolled. CD42b expression increased, whereas CD41 expression decreased after transfusion. Apheresis platelets exhibited the lowest expression of PAC-1 and P-selectin when exposed to agonist stimulations. PAC-1 expression increased under high adenosine diphosphate (ADP) stimulation, while P-selectin expression increased under both high ADP and thrombin receptor-activating peptide stimulation. In the subgroup analysis, patients with a CCI >4500 and those with the same blood types exhibited a more significant increase in PAC-1 and P-selectin expression under agonist stimulation. When comparing apheresis platelets collected on different days, only the percentage of platelet-derived microparticles showed a significant increase. CONCLUSION: Prophylactic transfusion improved platelet function. Platelet function significantly improved in patients with a CCI >4500, those with the same blood types as that of apheresis platelets, or those with platelet-derived microparticle levels <4.7%. No significant improvement in platelet function was noted after the transfusion of different blood types with acceptable compatibility or the transfusion of incompatible blood types. Our results suggest that transfusing platelets with the same blood type remains the optimal choice.


Subject(s)
Blood Platelets , Hematologic Neoplasms , Platelet Transfusion , Humans , Platelet Transfusion/methods , Hematologic Neoplasms/therapy , Blood Platelets/metabolism , Female , Male , Middle Aged , Aged , Adult , Platelet Function Tests , Platelet Count , P-Selectin/blood , Cell-Derived Microparticles/metabolism
9.
JMIR Res Protoc ; 13: e55662, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466979

ABSTRACT

BACKGROUND: In recent years, advancements in cancer treatment have enabled cancer cell inhibition, leading to improved patient outcomes. However, the side effects of chemotherapy, especially leukopenia, impact patients' ability to tolerate their treatments and affect their quality of life. Traditional Chinese medicine is thought to provide complementary cancer treatment to improve the quality of life and prolong survival time among patients with cancer. OBJECTIVE: This study aims to evaluate the effectiveness of Chinese herbal medicine (CHM) as a complementary treatment for neutropenia prevention and immunity modulation during chemotherapy in patients with breast cancer. METHODS: We will conduct a real-world pragmatic clinical trial to evaluate the effectiveness of CHM as a supplementary therapy to prevent neutropenia in patients with breast cancer undergoing chemotherapy. Patients will be classified into CHM or non-CHM groups based on whether they received CHM during chemotherapy. Using generalized estimating equations or repeated measures ANOVA, we will assess differences in white blood cell counts, absolute neutrophil counts, immune cells, and programmed cell death protein 1 (PD-1) expression levels between the 2 groups. RESULTS: This study was approved by the research ethics committee of Hualien Tzu Chi Hospital (IRB 110-168-A). The enrollment process began in September 2021 and will stop in December 2024. A total of 140 patients will be recruited. Data cleaning and analysis are expected to finish in the middle of 2025. CONCLUSIONS: Traditional Chinese medicine is the most commonly used complementary medicine, and it has been reported to significantly alleviate chemotherapy-related side effects. This study's findings may contribute to developing effective interventions targeting chemotherapy-related neutropenia among patients with breast cancer in clinical practice. TRIAL REGISTRATION: International Traditional Medicine Clinical Trial Registry ITMCTR2023000054; https://tinyurl.com/yc353hes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/55662.

10.
Bone Marrow Transplant ; 59(6): 849-857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38454131

ABSTRACT

Hematopoietic stem cell (HSC) transplantation, using either bone marrow (BM) or peripheral blood stem cells (PBSC), is a well-established therapy for various hematologic and non-hematologic diseases. However, the long-term health outcomes after HSC donation remain a major concern for several potential donors. Thus, we aimed to conduct a matched cohort study of 5003 unrelated donors (1099 BM and 3904 PBSC) and randomly selected 50,030 matched controls based on age, sex, and resident area from the donor registry between 1998 and 2018. The medical insurance claims of all the participants were retrieved from the Taiwan National Health and Welfare Data Science Center after de-identification. Our findings revealed no differences in the incidence of cancer, death, and catastrophic diseases between HSC donors and matched healthy participants during long-term follow-up. Kaplan-Meier curves depicting the cumulative incidence of cancer and overall mortality throughout the follow-up period also demonstrated similar outcomes between donors and non-donors. In conclusion, our results indicate that HSC donation, whether through BM or PBSC, is safe and not associated with an increased risk of cancer, death, or catastrophic diseases. These findings provide valuable information for counseling potential HSC donors and for long-term management of HSC donor health.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasms , Humans , Neoplasms/therapy , Male , Female , Follow-Up Studies , Adult , Hematopoietic Stem Cell Transplantation/methods , Middle Aged , Cohort Studies , Catastrophic Illness , Taiwan/epidemiology , Tissue Donors
11.
Biomed Pharmacother ; 169: 115911, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38000359

ABSTRACT

CPT-11 is one of the drugs employed in colorectal cancer treatment and has faced challenges in the form of resistance. The insulin-like growth factor 1 receptor is a tyrosine kinase receptor that mediates cancer cell survival and drug resistance. It is frequently overexpressed in colorectal cancer and has previously been identified as a microRNA target. MicroRNAs are non-coding RNA molecules that regulate gene function by suppressing messenger RNA translation. Studies have demonstrated that natural compounds can regulate microRNA function and their target genes. Therefore, combining natural compounds with existing cancer drugs can enhance the therapeutic efficacy. We investigated a natural compound, Aloin, for the potential sensitization of colorectal cancer to CPT-11. We used western blot, MTT cell viability assay, flow cytometry, and microRNA/gene knockdown and overexpression experiments, as well as an in vivo mouse model. Our investigation revealed that combining Aloin with CPT-11 exerts an enhanced anti-tumor effect in colorectal cancer. This combination reduced cell viability and induced apoptosis, both in vivo and in vitro. Furthermore, this combination upregulated miRNA-133b, while downregulating the IGF1R and its downstream MEK/ERK, and PI3K/AKT/mTOR pathways. Our findings suggests that CPT-11 and Aloin are potential combination treatment partners against colorectal cancer. MicroRNA-133b may serve as a co-therapeutic target with IGF1R against colorectal cancer, which might overcome the existing treatment limitations.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Irinotecan/pharmacology , Irinotecan/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System , Cell Proliferation , TOR Serine-Threonine Kinases/metabolism , MicroRNAs/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor
12.
Stem Cell Res Ther ; 14(1): 300, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864264

ABSTRACT

BACKGROUND: Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS: The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS: A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS: sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.


Subject(s)
Hematopoietic Stem Cell Mobilization , P-Selectin , Male , Mice , Humans , Animals , Hematopoietic Stem Cell Mobilization/methods , P-Selectin/genetics , P-Selectin/metabolism , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/metabolism , Recombinant Proteins/pharmacology
13.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629059

ABSTRACT

Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.


Subject(s)
Immunosuppression Therapy , Pyroptosis , Animals , Mice , Cell Death , Macrophages , Restraint, Physical
14.
Chin J Physiol ; 66(4): 189-199, 2023.
Article in English | MEDLINE | ID: mdl-37635478

ABSTRACT

Lung cancer is the most common malignant cancer worldwide. Combination therapies are urgently needed to increase patient survival. Calycosin is a phytoestrogen isoflavone that has been reported previously to inhibit tumor cell growth, although its effects on lung cancer remain unclear. The aim of this study was to investigate the effects of calycosin on cell proliferation and apoptosis of gemcitabine-resistant lung cancer cells. Using calycosin to treat human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) and examine the effects on the cells. Cultured human lung cancer cells (CL1-0) and gemcitabine-resistant lung cancer cells (CL1-0 GEMR) were treated with increasing concentrations of calycosin. Cell viability and apoptosis were studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide, flow cytometry, and TUNEL assays. Western blots were used to measure the expression levels of proliferation-related proteins and cancer stem cell proteins in CL1-0 GEMR cells. The results showed that calycosin treatment inhibited cell proliferation, decreased cell migration ability, and suppressed cancer stem cell properties in CL1-0 GEMR cells. Interestingly, in CL1-0 GEMR cells, calycosin treatment not only increased LDOC1 but also decreased GNL3L/NFκB protein levels and mRNA levels, in concentration-dependent manners. We speculate that calycosin inhibited cell proliferation of the gemcitabine-resistant cell line through regulating the LDOC1/GNL3L/NFκB pathway.


Subject(s)
Isoflavones , Lung Neoplasms , Humans , Gemcitabine , Lung Neoplasms/drug therapy , Cell Line, Tumor , NF-kappa B , Isoflavones/pharmacology , Cell Proliferation , Apoptosis , Nuclear Proteins/pharmacology , Tumor Suppressor Proteins/pharmacology , GTP-Binding Proteins/pharmacology
15.
J Biochem Mol Toxicol ; 37(12): e23497, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37564025

ABSTRACT

Lung cancer is one of the most common cancers in the world. Chemotherapy is a standard clinical treatment. However, tumor cells often develop multidrug resistance after chemotherapy, an inevitable bottleneck in cancer treatment. Therefore, this study used gemcitabine-resistant (GEM-R) CL1-0 lung cancer cells. First, we used flow cytometry and western blot analysis to examine differences in performance between resistant and parental cells. The results showed that compared with parental cells, GEM-R CL1-0 cells significantly enhanced the activation of the AKT pathway, which promoted survival and growth, and decreased the activation of the reactive oxygen species-extracellular signal-regulated kinase (ROS)-ERK pathway. Next, the AKT and ERK pathways' role in tumor growth was further explored in vivo using a xenograft model. The results showed that enhancing AKT and inhibiting ERK activation reduced GEM-induced inhibition of tumor growth. Finally, combining the above results, we found that GEM-R CL1-0 cells showed reduced sensitivity to GEM by activating the phosphatidylinositol 3-kinase/AKT/NF-kB pathway and inhibiting the ROS-ERK pathway leading to resistance against GEM. Therefore, the AKT and ERK pathways are potential targets for improving the sensitivity of cancer cells to anticancer drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Gemcitabine , NF-kappa B/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Line, Tumor , Apoptosis
16.
Chem Biol Drug Des ; 102(6): 1399-1408, 2023 12.
Article in English | MEDLINE | ID: mdl-37612133

ABSTRACT

Trauma-hemorrhagic shock (THS) is a medical emergency that is encountered by physicians in the emergency department. Chuan Xiong is a traditional Chinese medicine and ligustrazine is a natural compound from it. Ligustrazine improves coronary blood flow and reduces cardiac ischemia in animals through Ca2+ and ATP-dependent vascular relaxation. It also decreases the platelets' bioactivity and reduces reactive oxygen species formation. We hypothesized that ligustrazine could protect liver by decreasing the inflammation response, protein production, and apoptosis in THS rats. Ligustrazine at doses of 100 and 1000 µg/mL was administrated in Kupffer cells isolated from THS rats. The protein expressions were detected via western blot. The THS showed increased inflammation response proteins, mitochondria-dependent apoptosis proteins, and had a compensation effect on the Akt pathway. After ligustrazine treatment, the hemorrhagic shock Kupffer cells decreased inflammatory response and mitochondria-dependent apoptosis and promoted a more compensative effect of the Akt pathway. It suggests ligustrazine reduces inflammation response and mitochondria-dependent apoptosis induced by THS in liver Kupffer cells and promotes more survival effects by elevating the Akt pathway. These findings demonstrate the beneficial effects of ligustrazine against THS-induced hepatic injury, and ligustrazine could be a potential medication to treat the liver injury caused by THS.


Subject(s)
Proto-Oncogene Proteins c-akt , Shock, Hemorrhagic , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Shock, Hemorrhagic/drug therapy , Kupffer Cells/metabolism , Liver/metabolism , Inflammation/drug therapy
17.
Environ Toxicol ; 38(9): 2121-2131, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37219008

ABSTRACT

The most common cancer-related death in the world is non-small cell lung cancer (NSCLC). Gemcitabine (GEM) is a common and effective first-line chemotherapeutic drug for the treatment of NSCLC. However, the long-term use of chemotherapeutic drugs in patients usually induces cancer cell drug resistance, leading to poor survival, and prognosis. In this study, to observe and explore the key targets and potential mechanisms of NSCLC resistance to GEM, we first cultured lung cancer CL1-0 cells in a GEM-containing medium to induce CL1-0 cells to develop GEM resistance. Next, we compared protein expression between the parental and GEM-R CL1-0 cell groups. We observed significantly lower expression of autophagy-related proteins in GEM-R CL1-0 cells than in parental CL1-0 cells, indicating that autophagy is associated with GEM resistance in CL1-0 cells. Furthermore, a series of autophagy experiments revealed that GEM-R CL1-0 cells had significantly reduced GEM-induced c-Jun N-terminal kinase phosphorylation, which further affected the phosphorylation of Bcl-2, thereby reducing the dissociation of Bcl-2 and Beclin-1 and ultimately reducing the generation of GEM-induced autophagy-dependent cell death. Our findings suggest that altering the expression of autophagy is a promising therapeutic option for drug-resistant lung cancer.


Subject(s)
Autophagic Cell Death , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Gemcitabine , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Phosphorylation , Cell Line, Tumor , Drug Resistance, Neoplasm , Autophagy , Apoptosis
18.
J Cancer ; 14(3): 393-402, 2023.
Article in English | MEDLINE | ID: mdl-36860929

ABSTRACT

Oxaliplatin-based therapy is used as a first-line drug to treat metastatic colorectal cancer. However, long-term and repeated drug treatment resulted in drug resistance and the failure of chemotherapy. Various natural compounds were previously reported to act as chemosensitizers to reverse drug resistance. In this study, we found that platycodin D (PD), a saponin found in Platycodon grandiflorum, inhibited LoVo and OR-LoVo cells proliferation, invasion, and migration ability. Our results indicated that combined treatment of oxaliplatin with PD dramatically reduced the cellular proliferation in both LoVo and OR-LoVo cells. Furthermore, treatment with PD dose-dependently decreased LATS2/YAP1 hippo signaling and survival marker p-AKT expression, as well as increased cyclin-dependent kinase inhibitor proteins such as p21 and p27 expression. Importantly, PD activates and promotes YAP1 degradation through the ubiquitination and proteasome pathway. The nuclear transactivation of YAP was significantly reduced under PD treatment, leading to transcriptional inhibition of the downstream genes regulating cell proliferation, pro-survival, and metastasis. In conclusion, our results showed that PD is suitable as a promising agent for overcoming oxaliplatin-resistant colorectal cancer.

19.
Sci Rep ; 12(1): 18228, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309586

ABSTRACT

Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.


Subject(s)
Metal Nanoparticles , Nanoparticles , Seedlings , Germination , Vegetables , Ecosystem , Seeds , Titanium/toxicity , Nanoparticles/toxicity , Amaranth Dye , Metal Nanoparticles/toxicity
20.
Environ Toxicol ; 37(11): 2804-2812, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35993117

ABSTRACT

This study reports the effect of cardiac-specific insulin-like growth factor-II receptor α (IGF-IIRα) overexpression on the development of liver dysfunction in transgenic rats via STZ-induced diabetic hepatocyte damage. The cardio-hepatic syndrome comprises a number of heart and liver illnesses in which an acute or chronic disease in one organ can lead to acute or chronic disease in the other. However, the molecular mechanism involved in such a set of conditions is unclear. In this study, we developed a transgenic rat model with cardiac-specific overexpression of IGF-IIRα, which is a supplementary splicing variant of insulin-like growth factor-II receptor (IGF-IIR), expressed in pathological hearts, to investigate the relationship between late fetal gene expression in diabetic hearts and their influence on diabetic hepatopathy. STZ (55 mg/kg) was intraperitoneally delivered into IGF-IIR overexpressed transgenic (TG) and non-transgenic (NTG) animal models developed in Sprague-Dawley (SD) rats after an overnight fast. The relationship among IGF-IIRα overexpression and hepatocyte damages have been determined based on the complexity of damage in the liver. Our findings revealed that overexpression of the cardiac-specific IGF-IIRα enhances diabetes-induced morphological alterations and hepatic inflammation in the livers. The diabetic transgenic rats demonstrated the development of pathological conditions such as thick collagen fiber deposition, bridging fibrosis, and elevation of α-SMA and MMP1 related liver fibrosis mechanisms. Our data suggest that IGF-IIRα overexpression in the heart during a pathological state may worsen diabetic hepatopathy in rats.


Subject(s)
Diabetes Mellitus , Liver Diseases , Somatomedins , Animals , Collagen/metabolism , Diabetes Mellitus/metabolism , Hepatocytes/metabolism , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Liver Diseases/metabolism , Matrix Metalloproteinase 1/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Somatomedins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL