Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Food Funct ; 15(2): 866-880, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38165790

ABSTRACT

The immune system of infants is partly weak and immature, and supplementation of infant formula can be of vital importance to boost the development of the immune system. Lactoferrin (LF) and osteopontin (OPN) are essential proteins in human milk with immunoregulation function. An increasing number of studies indicate that proteins have interactions with each other in milk, and our previous study found that a ratio of LF : OPN at 1 : 5 (w/w, denoted as LOP) had a synergistic effect on intestinal barrier protection. It remains unknown whether LOP can also exert a stronger effect on immunoregulation. Hence, we used an in vitro model of LPS-induced macrophage inflammation and in vivo models of LPS-induced intestinal inflammation and early life development. We showed that LOP increased the secretion of the granulocyte-macrophage colony-stimulating factor (132%), stem cell factor (167%) and interleukin-3 (176%) in bone marrow cells, as well as thymosin (155%) and interleukin-10 (161%) in the thymus, more than LF or OPN alone during development, and inhibited changes in immune cells and cytokines during the LPS challenge. In addition, analysis of the components of digested proteins in vitro revealed that differentially expressed peptides may provide immunoregulation. Lastly, LOP increased the abundance of Rikenellaceae, Muribaculum, Faecalibaculum, and Elisenbergiella in the cecum content. These results imply that LOP is a potential immunomodifier for infants and offers a new theoretical basis for infant formula innovation.


Subject(s)
Lactoferrin , Osteopontin , Infant , Humans , Lactoferrin/chemistry , Osteopontin/genetics , Osteopontin/metabolism , Lipopolysaccharides/metabolism , Milk, Human/chemistry , Inflammation/metabolism , Immune System/metabolism
2.
Int J Biol Macromol ; 253(Pt 7): 127416, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37838132

ABSTRACT

Several studies indicate that the disruption of the intestinal epithelial barrier can lead to inflammatory bowel disease (IBD). Recent evidence has increasingly demonstrated that lactoferrin (LF) and osteopontin (OPN) can alleviate intestinal barrier injury. However, the potential synergistic effects of these two proteins and the mechanisms underlying their effects remain unclear. To address this question, we developed a lipopolysaccharide-induced intestinal barrier injury model in C57BL/6 N mice. Our findings demonstrated that the combination of LF and OPN at a 1:5 ratio exerts the strongest protective effect on the intestinal barrier, and it is more effective than LF or OPN alone. This protection is evidenced by the decrease in serum diamine oxidase (DAO) activity (1.66-fold decrease) and D-lactic content (1.51-fold decrease) and the reduced rate of FITC-labeled glucan transport across the jejunum (3.18-fold decrease). Moreover, the protein combination significantly promoted villi length (1.66-fold increase) and crypt depth (1.57-fold increase), improved tight junction protein structure and expression, and boosted the number of absorptive cells (4.34-fold increase) in the intestinal epithelium. Furthermore, the combination promoted crypt cell proliferation and differentiation via Notch signaling. In summary, our findings provide scientific evidence supporting the use of dietary intervention strategies for preventing IBD.


Subject(s)
Inflammatory Bowel Diseases , Osteopontin , Mice , Animals , Osteopontin/metabolism , Lactoferrin/pharmacology , Lactoferrin/metabolism , Mice, Inbred C57BL , Intestines , Intestinal Mucosa/metabolism , Inflammatory Bowel Diseases/metabolism
3.
Neurosci Lett ; 794: 136995, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36464148

ABSTRACT

Sevoflurane, a commonly used anesthetic in surgery, is considered as an inducer of neurodegenerative diseases and postoperative complications including postoperative cognitive dysfunction. Evidence showed that specificity protein 1 (SP1) participated in the regulation of various cellular processes. Also, SP1 was found to modulate sevoflurane-induced hippocampal inflammatory injury both in vitro and in vivo. Our study aimed to illustrate the role of SP1 in mediating mitochondrial stress and autophagy in neurons under sevoflurane exposure. SiRNA for SP1 was transfected in to hippocampus neurons for the loss-of-function assay before sevoflurane stimulation. Meanwhile, recilisib was utilized for PI3K/Akt/mTOR signaling activation, GTS-21 and MLA (methylycaconitine citrate) were used to activate or inactivate alpha 7 nicotinic acetylcholine receptor (α7-nAChR), respectively. Sevoflurane induced SP1 upregulation and autophagy suppression. Interfering SP1 dramatically depressed the promoted oxidative stress and mitochondrial dysfunction induced by sevoflurane. Additionally, SP1 silence blocked sevoflurane-induced activation of PI3K/Akt/mTOR signaling and inhibition of α7-nAChR. Restoring PI3K/Akt/mTOR signaling or depressing CAP significantly reversed the repressive effects of SP1 knockdown on mitochondrial stress and autophagy imbalance in hippocampal cells. In conclusions, our research indicated that SP1 regulated sevoflurane-induced oxidative stress dysregulation, mitochondrial function and cell autophagy in hippocampus via mediating the PI3K/Akt/mTOR and α7-nAChR pathways. Therefore, it might provide a novel sight for sevoflurane-induced hippocampus injury and POCD therapy.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sevoflurane/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Hippocampus/metabolism , Autophagy , Neurons/metabolism , Mitochondria/metabolism
5.
Diagnostics (Basel) ; 12(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36359476

ABSTRACT

In the diagnosis of Alzheimer's Disease (AD), the brain network analysis method is often used. The traditional network can only reflect the pairwise association between two brain regions, but ignore the higher-order relationship between them. Therefore, a brain network construction method based on hypergraph, called hyperbrain network, is adopted. The brain network constructed by the conventional static hyperbrain network cannot reflect the dynamic changes in brain activity. Based on this, the construction of a dynamic hyperbrain network is proposed. In addition, graph convolutional networks also play a huge role in AD diagnosis. Therefore, an evolving hypergraph convolutional network for the dynamic hyperbrain network is proposed, and the attention mechanism is added to further enhance the ability of representation learning, and then it is used for the aided diagnosis of AD. The experimental results show that the proposed method can effectively improve the accuracy of AD diagnosis up to 99.09%, which is a 0.3 percent improvement over the best existing methods.

6.
Nutrients ; 14(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36079904

ABSTRACT

Breast milk is an unparalleled food for infants, as it can meet almost all of their nutritional needs. Breast milk in the first month is an important source of acquired immunity. However, breast milk protein may vary with the stage of lactation. Therefore, the aim of this study was to use a data-independent acquisition approach to determine the differences in the proteins of breast milk during different lactation periods. The study samples were colostrum (3-6 days), transitional milk (7-14 days), and mature milk (15-29 days). The results identified a total of 2085 different proteins, and colostrum contained the most characteristic proteins. Protein expression was affected by the lactation stage. The proteins expressed in breast milk changed greatly between day 3 and day 14 and gradually stabilized after 14 days. The expression levels of lactoferrin, immunoglobulin, and clusterin were the highest in colostrum. CTP synthase 1, C-type lectin domain family 19 member A, secretoglobin family 3A member 2, trefoil factor 3 (TFF3), and tenascin were also the highest in colostrum. This study provides further insights into the protein composition of breast milk and the necessary support for the design and production of infant formula.


Subject(s)
Milk, Human , Proteomics , Breast Feeding , Colostrum , Female , Humans , Infant , Lactation/metabolism , Milk, Human/metabolism , Pregnancy
7.
Int J Neurosci ; : 1-11, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36066545

ABSTRACT

PURPOSE: Microglia-mediated inflammation is associated with perioperative neurocognitive disorders (PNDs) caused by sevoflurane. Dexmedetomidine has been reported to protect against sevoflurane-induced cognitive impairment. In this study, we investigated the effects and underlying mechanisms of dexmedetomidine on sevoflurane-induced microglial neuroinflammation and PNDs. METHODS: Wild-type and purinergic ionotropic 4 receptor (P2X4R) overexpressing C57/BL6 mice were intraperitoneally injected with 20 µg/kg dexmedetomidine or an equal volume of normal saline 2 h prior to sevoflurane exposure. The Morris water maze (MWM) test was performed to assess cognitive function. Immunofluorescence staining was employed to detect microglial activation. The expression levels of proinflammatory cytokines were measured by real-time quantitative PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The protein levels of P2X4R and NOD-like receptor protein 3 (NLRP3) were detected by Western Blotting. RESULTS: Sevoflurane increased the number of microglia, upregulated the levels of proinflammatory cytokines, elevated the protein levels of P2X4R and NLRP3 in the hippocampus and induced cognitive decline, while pretreatment with dexmedetomidine downregulated the protein levels of P2X4R and NLRP3, alleviated sevoflurane-induced microglial neuroinflammation and improved cognitive dysfunction. Moreover, overexpression of P2X4R weakened the neuroprotective effect of dexmedetomidine. CONCLUSIONS: Dexmedetomidine protected against sevoflurane-induced neuroinflammation and neurocognitive disorders by suppressing the P2X4R/NLRP3 pathway.

8.
Vet Microbiol ; 272: 109498, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35793585

ABSTRACT

Interleukin 4 (IL-4) plays a major role in T-lymphocyte development and is thought to be a central regulator as a cofactor in resting B-lymphocyte proliferation. Primary infection with porcine reproductive and respiratory syndrome virus (PRRSV) induces minimal IL-4 production, whereas an IL-4 response occurs in the peripheral blood of piglets reinfected by PRRSV. The locations and interaction partners for the massive volume of IL-4 triggered by PRRSV reinfection remain unclear. This study aimed to investigate the characteristics of IL-4 secretion and location changes in peripheral immune organs induced by PRRSV infection and reinfection. Our results show that PRRSV reinfection induced higher levels of IL-4 mRNA and protein expression in the peripheral immune organs (e.g., lymph node and spleen) and peripheral blood compared with PRRSV primary infection. Importantly, we found that, following PRRSV reinfection, an obvious large-scale migration of IL-4 occurred in the lymph nodes. During PRRSV primary infection, IL-4 was mainly concentrated around the lymphoid follicles and paracortical regions of the lymph node and also located in the marginal area and periarterial lymphatic sheath region of the spleen. During PRRSV reinfection, the now abundant IL-4 gathered into the lymphoid follicles of the lymph node and spleen. Notably, IL-4 changed its location state from scattered and sparse during primary infection to clinging to B lymphocytes in the lymphoid follicles during reinfection. During reinfection, IL-4 was often co-localized with T and B lymphocytes; furthermore, the percentages of several T lymphocyte subsets, N protein-specific antibody levels, and viral load in the peripheral blood or lymph tissues underwent remarkable variation. Another important finding of this study was that the numbers of B lymphocytes and T lymphocytes in the lymphoid nodes were significantly reduced after PRRSV infection or reinfection, presumably due to PRRSV-induced acute bone marrow failure and autophagy in thymic epithelial cells. This study revealed the characteristics of IL-4 migration and distribution in the peripheral lymph organs induced by PRRSV reinfection and provides valuable clues for further exploration of the interactions between IL-4, B lymphocytes, and T lymphocytes during PRRSV infection and reinfection.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , B-Lymphocytes , Interleukin-4 , Reinfection/veterinary , Swine , T-Lymphocytes
9.
Front Psychiatry ; 13: 855810, 2022.
Article in English | MEDLINE | ID: mdl-35664490

ABSTRACT

Background: Major depressive disorder (MDD) refers to a mental disease with complex pathogenesis and treatment mechanism. S-ketamine exhibited high effectiveness in treating MDD. However, the pharmacological activity of S-ketamine has not been reported yet. Materials and Methods: In this study, depression-like characteristics were induced by chronic unpredictable stress (CUS). After S-ketamine (15 mg/kg) was intraperitoneally injected, the behaviors of mice were tested by conducting open-field test, elevated plus maze test, tail suspension test, and forced swimming test. Bilateral injection of sirtuin type 1 (SIRT1) inhibitor EX-527 was injected into the medial prefrontal cortex (mPFC) to upregulate the SIRT1 expression. The expression of SIRT1 and brain-derived neurotrophic factor (BDNF) was detected by conducting Western blot and immunofluorescence assays. Meanwhile, the synaptic ultrastructure was detected by transmission electron microscopy. Results: In this study, the mice showed depression-like behavior in a series of behavioral tests. After the treatment with S-ketamine, the depression-like behavior stopped. Further, the synaptic ultrastructure in mPFC, including the decreased curvature of the post synaptic density and thinning of the postsynaptic density, improved after the S-ketamine treatment. Moreover, we found that S-ketamine had the possibility of spontaneous binding with SIRT1 at the molecular level and reversed CUS-induced SIRT1 reduction. Meanwhile, a positive relationship between SIRT1 and BDNF expression in mPFC and SIRT1 inhibitor limited the role of S-ketamine in reducing the depression-like behavior and increasing the BDNF level. Conclusion: S-ketamine upregulated the SIRT1-mediated BDNF in mPFC and reversed the synaptic structural defects caused by CUS. SIRT1 is a mediator of S-ketamine in alleviating depression-like behavior.

10.
Viruses ; 14(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35746666

ABSTRACT

In recent years, porcine reproductive and respiratory syndrome virus (PRRSV) strains have been experiencing extensive recombination in Chinese swine farms. This recombination usually happens in NADC30/34 strains and highly pathogenic (HP) PRRSV strains. This study identified a new PRRSV isolate that shared 99% and 99.1% nucleotide identity with CH-1a and CH-1R at the genomic level, respectively. After purification by viral plaque assay, this isolate was named PRRSV CSR1801. The isolate did not experience any recombination with other PRRSV strains common in swine herd epidemics in China, which means it still maintains the stable features of the classical PRRSV strain and did not easily recombine with other PRRSV strains. Further analysis of the pathogenicity of the PRRSV isolate CSR1801 was performed in piglets. The results indicated that none of the inoculated piglets showed the typical clinical manifestations of PRRS, which presented with runny noses, rough back hair, rectal temperatures always below 40.5 °C, and no deaths. Additionally, no obvious histopathological lesions such as severe interstitial pneumonia could be observed in the lungs of the piglets. Hence, the PRRSV isolate CSR1801 should be classified as a classical-like PRRSV strain. This classical PRRSV strain showed genetic stability and maintained low pathogenicity. This study may provide new clues for further understanding the genetic evolution and pathogenicity of PRRSV and may also be an important reference for the prevention and control of PRRS in swine farms.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , China/epidemiology , Farms , Genome, Viral , Phylogeny , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Virulence
11.
Comput Math Methods Med ; 2022: 8903037, 2022.
Article in English | MEDLINE | ID: mdl-36590762

ABSTRACT

As cancer with the highest morbidity and mortality in the world, lung cancer is characterized by pulmonary nodules in the early stage. The detection of pulmonary nodules is an important method for the early detection of lung cancer, which can greatly improve the survival rate of lung cancer patients. However, the accuracy of conventional detection methods for lung nodules is low. With the development of medical imaging technology, deep learning plays an increasingly important role in medical image detection, and pulmonary nodules can be accurately detected by CT images. Based on the above, a pulmonary nodule detection method based on deep learning is proposed. In the candidate nodule detection stage, the multiscale features and Faster R-CNN, a general-purpose detection framework based on deep learning, were combined together to improve the detection of small-sized lung nodules. In the false-positive nodule filtration stage, a 3D convolutional neural network based on multiscale fusion is designed to reduce false-positive nodules. The experiment results show that the candidate nodule detection model based on Faster R-CNN integrating multiscale features has achieved a sensitivity of 98.6%, 10% higher than that of the other single-scale model, the proposed method achieved a sensitivity of 90.5% at the level of 4 false-positive nodules per scan, and the CPM score reached 0.829. The results are higher than methods in other works of literature. It can be seen that the detection method of pulmonary nodules based on multiscale fusion has a higher detection rate for small nodules and improves the classification performance of true and false-positive pulmonary nodules. This will help doctors when making a lung cancer diagnosis.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging
12.
Anat Rec (Hoboken) ; 304(11): 2397-2411, 2021 11.
Article in English | MEDLINE | ID: mdl-34623030

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease that accounts for approximately 70% of dementia. Following the global escalation of the aging process, the morbidity of AD is increasing rapidly. The current treatment for AD is mainly limited to medications, such as acetylcholinesterase inhibitors. However, the efficacy of acetylcholinesterase inhibitors in improving memory and cognitive functions is not satisfactory. It is a challenge to find an effective alternative therapy for ameliorating AD symptoms. As an important therapeutic technique in traditional Chinese medicine, acupuncture has been proved effective in treating many neurologic diseases including AD. The efficacy of acupuncture is also acknowledged by the National Institutes of Health of the United States. Here, we summarized the effectiveness of acupuncture for treating AD. Especially, the role of acupuncture at certain acupuncture points in modulating the brain function through meridians activity based on Chinese meridian theory is discussed. How acupuncture at a certain acupoint can improve AD symptoms is also described. Furthermore, the possible molecular mechanisms of acupuncture for AD are reviewed, and the role of acupuncture in modulating signaling molecules in neural protection and homeostasis is highlighted. This study may help to understand the theoretical basis and potential molecular mechanisms of acupuncture therapy for AD.


Subject(s)
Acupuncture Therapy , Alzheimer Disease , Alzheimer Disease/therapy , Humans , Treatment Outcome
13.
J Pharmacol Sci ; 146(2): 105-115, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33941321

ABSTRACT

OBJECTIVE: To investigate the effect of sevoflurane on inflammation of microglia in hippocampus of neonatal rats, and to investigate whether the related mechanism is related to Wnt/ß-Catenin/CaMKIV pathway. METHODS: Neonatal rats were anesthetized with 2% or 3% sevoflurane for 4 h a day for 3 consecutive days. Water maze test was used to detect the effect of sevoflurane anesthesia on memory function of neonatal rats. H&E and Nissl staining were used to observe the pathological damage of hippocampal area of neonatal rats induced by sevoflurane anesthesia. The expression of microglial marker Iba-1 was detected by Immunofluorescence. Immunofluorescence and WB were used to detect the expression CD32b, CD86, TNF-α, IL-6, Wnt3a, ß-Catenin and CaMKIV in hippocampus. To further explore the related mechanism, Wnt-3α inhibitor and activator was treated to study the effect of sevoflurane on microglial inflammation in hippocampus of neonatal rats. RESULTS: Sevoflurane anesthesia significantly increased escape latency time, reduced platform crossing times, and damaged the learning and memory ability of neonatal rats. H&E and Nissl staining results showed that sevoflurane anesthesia caused obvious damage to the hippocampus of neonatal rats. Sevoflurane anesthesia promoted the expression of Iba-1 and activated microglia. Sevoflurane anesthesia not only significantly increased the positive expression of CD32b, CD86, TNF-α and IL-6, but also decreased the expression of Wnt3a, ß-Catenin and CaMKIV. These results suggested that sevoflurane inhibited Wnt/ß-Catenin/CaMKIV pathway. CONCLUSION: Sevoflurane induces inflammation of microglia in hippocampus of neonatal rats by inhibiting Wnt/ß-Catenin/CaMKIV pathway.


Subject(s)
Anesthetics, Inhalation/adverse effects , Animals, Newborn/genetics , Animals, Newborn/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Inflammation/etiology , Microglia/metabolism , Microglia/pathology , Sevoflurane/adverse effects , Signal Transduction/drug effects , Signal Transduction/genetics , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Gene Expression/drug effects , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
Chin J Physiol ; 64(1): 24-31, 2021.
Article in English | MEDLINE | ID: mdl-33642341

ABSTRACT

Accumulating evidence has already indicated that traditional Chinese medicine (TCM) possesses tremendous potential for treating neurodegenerative diseases. Astragalus, also named Huangqi, is a famous traditional medical herb that can be applied to treat cerebral ischemia and prevent neuronal degeneration. Nevertheless, the underlying mechanisms remain largely unexplored. In the present study, Astragalus-containing serum (ASMES) was prepared and added into the culture medium of PC12 cells to explore its neuroprotective effect on 6-hydroxydopamine (6-OHDA)-caused neuronal toxicity. Our data showed that ASMES significantly ameliorated the cellular viability of cultured PC12 cells against the neurotoxicity induced by 6-OHDA (P < 0.05). Moreover, ASMES significantly decreased the cell apoptosis triggered by 6-OHDA (P < 0.01). Furthermore, 2',7'-dichlorofluorescin diacetate assay was performed to detect the changes in oxidative stress, and we showed that 6-OHDA elevated the production of reactive oxygen species (ROS), whereas ASMES significantly reversed these changes (P < 0.01). Besides, mitochondrial membrane potential (MMP) assay showed that ASMES could restore 6-OHDA-damaged MMP in cultured PC12 cells (P < 0.05). In conclusion, Astragalus could protect PC12 cells from 6-OHDA-caused neuronal toxicity, and possibly, the ROS-mediated apoptotic pathway participated in this process. Collectively, our findings provided valuable insights into the potential in treatment of neurodegenerative diseases.


Subject(s)
Neuroprotective Agents , Animals , Apoptosis , Cell Survival , Membrane Potential, Mitochondrial , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , PC12 Cells , Rats , Reactive Oxygen Species
15.
Crit Rev Oncol Hematol ; 157: 103124, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254041

ABSTRACT

The microRNA-26 family, including miR-26a, miR-26b, miR-1297 and miR-4465, is a group of broadly conserved small RNAs with identical sequences at the seed region. The expression of miR-26 could be induced by hypoxia via a HIF-dependent mechanism, and up-regulated during multiple cell differentiation. Accumulating studies have demonstrated that miR-26 family members could be detected in many different kinds of tumors, and their validated target genes are involved in cell metabolism, proliferation, differentiation, apoptosis, invasion and metastasis. The expression of miR-26 might be a potentially valuable biomarker and a new target for cancer therapy. In this review, miR-26 family and its target genes in tumorigenesis and development will be summarized as follows.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Humans , MicroRNAs/genetics
16.
J Pineal Res ; 69(3): e12674, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32535982

ABSTRACT

Melatonin (MLT) is widely used to treat sleep disorders although the underlying mechanism is still elusive. In mice, using wheel-running detection, we found that exogenous MLT could completely recover the period length prolonged by N-methyl-D-aspartate receptor (NMDAR) impairment due to the injection of the NMDAR antagonist MK-801, a preclinical model of psychosis. The analysis of the possible underlying mechanisms indicated that MLT could regulate the homeostatic state in the ventrolateral preoptic nucleus (VLPO) instead of the circadian process in the suprachiasmatic nucleus (SCN). In addition, our data showed that MK-801 decreased Ca2+ -related CaMKII expression and CREB phosphorylation levels in the VLPO, and MLT could rescue these intracellular impairments but not NMDAR expression levels. Accordingly, Gcamp6 AAV virus was injected in-vivo to further monitor intracellular Ca2+ levels in the VLPO, and MLT demonstrated a unique ability to increase Ca2+ fluorescence compared with MK-801-injected mice. Additionally, using the selective melatonin MT2 receptor antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT), we discovered that the pharmacological effects of MLT upon NMDAR impairments were mediated by melatonin MT2 receptors. Using electroencephalography/electromyography (EEG/EMG) recordings, we observed that the latency to the first nonrapid eye movement (NREM) sleep episode was delayed by MK-801, and MLT was able to recover this delay. In conclusion, exogenous MLT by acting upon melatonin MT2 receptors rescues sleep phase delayed by NMDAR impairment via increasing intracellular Ca2+ signaling in the VLPO, suggesting a regulatory role of the neurohormone on the homeostatic system.


Subject(s)
Calcium Signaling/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dizocilpine Maleate/pharmacology , Melatonin/pharmacology , Preoptic Area/metabolism , Receptor, Melatonin, MT2/metabolism , Sleep Stages/drug effects , Animals , Electroencephalography , Electromyography , Male , Melatonin/metabolism , Mice
17.
Anat Rec (Hoboken) ; 303(9): 2402-2414, 2020 09.
Article in English | MEDLINE | ID: mdl-32478467

ABSTRACT

The social deficit is a prevailing symptom in stress-induced depression. Although social interaction behavior has been widely studied in humans and rodents, it is imprecise to record the social behavior between two free-moving mice via perusal. In the present study, we applied an approach to analyze the social behavior in mice using a software named "MiceProfiler." C57BL/6J mice were stressed via chronic restraint stress (CRS) and housed in three populations of different sizes as follows: single, three in a cage, and six in a cage. The MiceProfiler was used to analyze the video of behavioral repertoire and, the result showed that stressed and single housed mice exhibited more social interaction both in the contact time and contact activities. Furthermore, we investigated the effect of CRS on social behavior when the mice were housed in larger populations size (three or six in a cage) and found that, the CRS procedure promoted social interaction. However, the larger population size resulted in the less total contact time, less time of head-tail, and moving in an opposite way. Besides, the CRS mice showed less social avoidance while the mice from a larger population presented less active contact. And the CRS mice also exhibited a higher social hierarchy compared with the control. Our data indicated that mild restraint stress might increase the intercommunication between mice. Collectively, our findings provided a new evidence for social behavior study and the MiceProfiler could be a new tool to measure the social behaviors of rodents.


Subject(s)
Behavior, Animal/physiology , Restraint, Physical , Social Behavior , Stress, Psychological/psychology , Animals , Male , Mice , Social Interaction
18.
Neurochem Res ; 45(9): 2082-2090, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32594292

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a common complication induced by anesthesia or surgery, which affects the concentration, cognition and memory of patients. Sevoflurane, a clinical anesthetic, could stimulate neuro-inflammation and lead to POCD. Recent studies found that specificity protein 1 (SP1) participates in the development of neurological diseases. Our study aims to elucidate the role of SP1 in sevoflurane-induced POCD pathogenesis. We anesthetized Sprague-Dawley rats and treated the primary hippocampal neurons with sevoflurane to construct the in vivo and in vitro POCD models. Besides, the expression and regulatory mechanism of SP1 in the pathogenesis of POCD were explored. According to the results, sevoflurane anesthesia impaired the cognitive functions of rat, significantly elevated SP1 expression and inactivated the cholinergic anti-inflammatory pathway (CAP) both in vivo and in vitro. Moreover, the sevoflurane-treated rats and neurons also exhibited obvious inflammatory responses and enhanced apoptosis. Loss-of-function assay indicated that SP1 knockdown rescued the deactivation of CAP and alleviated the sevoflurane-induced neuro-inflammation and apoptosis in rat hippocampus. Generally, our study documented that the sevoflurane-induced SP1 up-regulation affected the activation of CAP, leading to the aggravated neuro-inflammation and apoptosis. This may provide a novel sight for POCD therapy.


Subject(s)
Anesthetics, Inhalation/adverse effects , Inflammation/etiology , Postoperative Cognitive Complications/etiology , Sevoflurane/adverse effects , Sp1 Transcription Factor/metabolism , Animals , Apoptosis/drug effects , Gene Knockdown Techniques , Gene Silencing , Hippocampus/drug effects , Hippocampus/pathology , Inflammation/chemically induced , Morris Water Maze Test/drug effects , Neurons/drug effects , Postoperative Cognitive Complications/chemically induced , Rats, Sprague-Dawley , Sp1 Transcription Factor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
19.
Biofactors ; 46(1): 38-54, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31518024

ABSTRACT

Recent studies have revealed that the gut microbiota participates in the psychiatric behavior changes in disorders associated with alcohol. But it still remains unknown whether alcoholism is involved in changes in gut microbiota and its underlying mechanism is also not clear. Here, we tested the gut microbiota of patients with alcoholism and conducted fecal microbiota transplantation (FMT) from patients with alcoholism to C57BL/6J mice whose gut microbiota had been sharply suppressed with antibiotics (ABX). Then we evaluated their alcohol preference degree, anxiety, and depression-like behaviors and social interaction behaviors, together with molecular changes in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Our data indicated that the gut microbiota of patients with alcoholism was drastically different from those of the healthy adults. The abundance of p_Firmicutes was significantly increased whereas p_Bacteroidetes was decreased. Compared to mice transplanted with fecal microbiota from healthy male adults, the mice accepting fecal microbiota from patients with alcoholism showed (a) anxiety-like and depression-like behaviors, (b) decreased social interaction behaviors, (c) spontaneous alcohol preference, and (d) decreased brain-derived neurotrophic factor (BDNF), alpha 1 subunit of GABA type A receptor (α1GABAA R) in mPFC and decreased metabotropic glutamate receptors 1 (mGluR1), protein kinase C (PKC) ε in NAc. Overall, our results suggest that fecal microbiota from patients with alcoholism did induce a status like alcohol dependence in C57BL/6J mice. The decreased expression of BDNF, α1GABAA R, and mGluR1/ PKC ε may be the underlying mechanism.


Subject(s)
Alcoholism/microbiology , Anxiety/microbiology , Brain/metabolism , Depression/microbiology , Fecal Microbiota Transplantation/methods , Protein Kinase C-epsilon/metabolism , Receptors, Metabotropic Glutamate/metabolism , Adult , Alcoholism/psychology , Animals , Anxiety/psychology , Behavior, Animal , Depression/psychology , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL
20.
Cancer Manag Res ; 11: 4631-4642, 2019.
Article in English | MEDLINE | ID: mdl-31191024

ABSTRACT

Purpose: Resveratrol (RV), a promising anti-cancer candidate, is limited in application for its poor bioavailability. However, the better bioavailability has been found in some RV derivatives. So in this paper, we explore the structure-activity relationship and the metabolic profiles of RV and its analogs (polydatin [PD], oxyresveratrol [ORV], acetylresveratrol [ARV]) in human bladder cancer T24 cells, and then evaluate their active forms and key chemical functional groups which may determine the fate of tumor cells. Methods: Drug sensitivity is evaluated by MTT assay, HE staining and flow cytometry analysis after T24 cells treated with RV, PD, ORV and ARV, respectively. Then the drug metabolites, in alive and dead T24 cells, also in T24 cell supernatant and lysates, are qualitatively and quantitatively analyzed by high-performance liquid chromatography, liquid chromatography coupled with tandem mass spectrum and high-resolution mass spectrometry technologies, respectively. Results: RV, ORV and ARV inhibit bladder cancer cells growth in a dose- and time-dependent manner, and exert the anti-tumor potency to T24 cells in order of ORV>ARV>RV>PD. Meanwhile, similar metabolic profiles of the above compounds are found not only in cell supernatant and lysate, but also in dead and alive T24 cells after drug treatment, and the main metabolites of RV, ORV and PD are their prototypes, but ARV is mainly metabolized to RV. Conclusion: The inhibitory potencies to T24 cells in the order of ORV>ARV>RV>PD are related to the structure and metabolism of RV and its analogs. Meanwhile, the number and position of free phenolic hydroxyl groups play a prominent role in antitumor activities. Therefore, protecting phenolic hydroxyl groups, and inhibiting drug metabolism to keep phenolic hydroxyl groups free would be the promising strategies to ensure the bioactivity of RV and its analogs, and thus to improve RV's bioactivity and promote RV clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL
...