Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Environ Sci Pollut Res Int ; 31(10): 14980-14989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38286932

ABSTRACT

As one of the typical brominated flame retardants, decabromodiphenyl ether (BDE-209) has been widely detected in environment. However, scarce information was available on BDE-209 phototransformation mechanisms in various media. In this study, compound-specific stable isotope analysis was first applied to investigate BDE-209 phototransformation in n-hexane, MeOH:H2O (v:v, 8:2), and simulated seawater by simulated sunlight. BDE-209 transformation followed pseudo-first-order kinetic, with degradation rate in the following of n-hexane (2.66 × 10-3 min-1) > simulated seawater (1.83 × 10-3 min-1) > MeOH:H2O (1.41 × 10-3 min-1). Pronounced carbon isotope fractionation was first observed for BDE-209 phototransformation, with carbon isotope enrichment factors (εC) of -1.01 ± 0.14‰, -1.77 ± 0.26‰, -2.94 ± 0.38‰ in n-hexane, MeOH:H2O and simulated seawater, respectively. Combination analysis of products and stable carbon isotope, debromination with cleavage of C-Br bonds as rate-limiting step was the main mechanism for BDE-209 phototransformation in n-hexane, debromination and hydroxylation with cleavage of C-Br bonds as rate-limiting steps in MeOH:H2O, and debromination, hydroxylation and chlorination in simulated seawater. This present study confirmed that stable carbon isotope analysis was a robust method to discovery the underlying phototransformation mechanisms of BDE-209 in various solutions.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Hexanes , Halogenated Diphenyl Ethers/metabolism , Sunlight , Carbon Isotopes , Carbon , Flame Retardants/metabolism
2.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076884

ABSTRACT

Despite a moderate mutation burden, clear cell renal cell carcinoma (ccRCC) responds well to immune checkpoint blockade (ICB) therapy. Here we report that loss-of-function mutations in the von Hippel-Lindau (VHL) gene, the most frequent in ccRCC, underlies its responsiveness to ICB therapy. We demonstrate that genetic knockout of the VHL gene enhanced the efficacy of anti-PD-1 therapy in multiple murine tumor models in a T cell-dependent manner. Mechanistically, we discovered that upregulation of HIF1α and HIF2α induced by VHL gene loss decreased mitochondrial outer membrane potential and caused the cytoplasmic leakage of mitochondrial DNA (mtDNA), which triggered cGAS-STING activation and induced type I interferons. Our study thus provided novel mechanistic insights into the role of VHL gene loss in potentiating ccRCC immunotherapy.

3.
Environ Sci Technol ; 57(40): 15266-15276, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37773091

ABSTRACT

The uptake, translocation, and transformation of 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) in wheat (Triticum aestivum L.) were comprehensively investigated by hydroponic experiments using compound-specific stable isotope analysis (CSIA) and transcriptome analysis. The results indicated that BDE-47 was quickly adsorbed on epidermis of wheat roots and then absorbed in roots via water and anion channels as well as an active process dependent on energy. A small fraction of BDE-47 in roots was subjected to translocation acropetally, and an increase of δ13C values in shoots than roots implied that BDE-47 in roots had to cross at least one lipid bilayer to enter the vascular bundle via transporters. In addition, accompanied by the decreasing concentrations, δ13C values of BDE-47 showed the increasing trend with time in shoots, indicating occurrence of BDE-47 transformation. OH-PBDEs were detected as transformation products, and the hydroxyl group preferentially substituted at the ortho-positions of BDE-47. Based on transcriptome analysis, genes encoding polybrominated diphenyl ether (PBDE)-metabolizing enzymes, including cytochrome P450 enzymes, nitrate reductases, and glutathione S-transferases, were significantly upregulated after exposure to BDE-47 in shoots, further evidencing BDE-47 transformation. This study first reported the stable carbon isotope fractionation of PBDEs during translocation and transformation in plants, and application of CSIA and transcriptome analysis allowed systematically characterize the environmental behaviors of pollutants in plants.


Subject(s)
Halogenated Diphenyl Ethers , Polybrominated Biphenyls , Halogenated Diphenyl Ethers/analysis , Triticum/genetics , Ether , Ethyl Ethers , Carbon Isotopes , Polybrominated Biphenyls/analysis , Gene Expression Profiling
4.
J Environ Manage ; 335: 117622, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36867899

ABSTRACT

As a novel brominate flame retardants, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) has been extensively used in various consumer products, and frequently detected in various environmental matrices. However, the microbial degradation of BTBPE remains unclear in the environment. This study comprehensively investigated the anaerobic microbial degradation of BTBPE and therein stable carbon isotope effect in the wetland soils. BTBPE degradation followed the pseudo-first-order kinetic, with degradation rate of 0.0085 ± 0.0008 day-1. Based on identification of degradation products, stepwise reductive debromination was the main transformation pathway of BTBPE, and tended to keep the stable of 2,4,6-tribromophenoxy group during the microbial degradation. The pronounced carbon isotope fractionation was observed for BTBPE microbial degradation, and carbon isotope enrichment factor (εC) was determined to be -4.81 ± 0.37‰, indicating cleavage of C-Br bond as the rate-limiting step. Compared to previously reported isotope effects, carbon apparent kinetic isotope effect (AKIEC = 1.072 ± 0.004) suggested that the nucleophilic substitution (SN2 reaction) was the potential reaction mechanism for reductive debromination of BTBPE in the anaerobic microbial degradation. These findings demonstrated that BTBPE could be degraded by the anaerobic microbes in wetland soils, and the compound-specific stable isotope analysis was a robust method to discover the underlying reaction mechanisms.


Subject(s)
Soil , Wetlands , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes/analysis
5.
Adv Sci (Weinh) ; 10(10): e2205835, 2023 04.
Article in English | MEDLINE | ID: mdl-36739602

ABSTRACT

Cytotoxic chemotherapy is a primary treatment modality for many patients with advanced cancer. Increasing preclinical and clinical observations indicate that chemotherapy can exacerbate tumor metastasis. However, the underlying mechanism remains unclear. Here, it is attempted to identify the mechanisms underlying chemotherapy-induced cancer recurrence and metastasis. It is revealed that a small subpopulation of "near-death cells" (NDCs) with compromised plasma membranes can reverse the death process to enhance survival and repopulation after exposure to lethal doses of cytotoxins. Moreover, these NDCs acquire enhanced tumorigenic and metastatic capabilities, but maintain chemosensitivity in multiple models. Mechanistically, cytotoxin exposure induces activating transcription factor 4 (ATF4)-dependent nonclassical NF-κB signaling activation; ultimately, this results in nuclear translocation of p52 and RelB in NDCs. Deletion of ATF4 in parental cancer cells significantly reduces colony formation and metastasis of NDCs, whereas overexpression of ATF4 activates the nonclassical NF-κB signaling pathway to promote chemotherapy-induced metastasis of NDCs. Overall, these results provide novel mechanistic insights into the chemotherapy-induced metastasis and indicate the pivotal role of NDCs in mediating tumor relapse after cytotoxic therapy. This study also suggests that targeting ATF4 may be an effective approach in improving the efficacy of chemotherapy.


Subject(s)
Antineoplastic Agents , NF-kappa B , Humans , NF-kappa B/metabolism , Activating Transcription Factor 4/metabolism , Neoplasm Recurrence, Local , Signal Transduction
6.
Adv Sci (Weinh) ; 10(8): e2204177, 2023 03.
Article in English | MEDLINE | ID: mdl-36658726

ABSTRACT

Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo- or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a "radiation-tolerant persister" (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding-like division, and type I interferon-mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation-persistence by poly- and de-polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.


Subject(s)
Neoplasms , Humans , Cell Line, Tumor , Neoplasms/radiotherapy
7.
Mar Pollut Bull ; 188: 114622, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701973

ABSTRACT

As the widely used flame retardant, polybrominated diphenyl ethers (PBDEs) have been ubiquitously detected in wetland sediments. Microbial degradation is the importantly natural attenuation process for PBDEs in sediments. In this study, the microbial degradation of PBDEs and inherent alternation of microbial communities were explored in anaerobic sediments from coastal wetland, North China. BDE-47 and BDE-153 could be degraded by the indigenous microbes, with biodegradation following pseudo-first-order kinetic. In sediments, the major genera for BDE-47 and BDE-153 degradation were Paeisporosarcina and Gp7, respectively, in single exposure. However, Marinobacter was dominant genera in the combined exposure to BDE-47 and BDE-153, and competition against Marinobacter existed between BDE-47 and BDE-153 degradation. Analysis of bacterial metabolic function indicated that membrane transport, amino acid and carbohydrate metabolism were included in degradation. This study provides the systematic characterization of the sediment microbial community structure and function associated anaerobic microbial degradation of PBDEs in coastal wetland.


Subject(s)
Microbiota , Water Pollutants, Chemical , Halogenated Diphenyl Ethers/analysis , Wetlands , Anaerobiosis , China , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
8.
Int J Radiat Biol ; 99(6): 915-924, 2023.
Article in English | MEDLINE | ID: mdl-34187285

ABSTRACT

PURPOSE: To provide an updated summary of recent advances in our understanding of the non-canonical roles of apoptotic and DNA double-strand break repair factors in various biological processes, especially in the cellular response to radiotherapy. CONCLUSION: Apoptotic caspases are usually considered as "executioners'' of unwanted or damaged cells or tissues. However, recent studies indicated they play multiple additional, often counterintuitive roles in many biological processes. Similarly, DNA double-strand break (DSB) repair factors were also found to play unexpected roles beyond repairing damaged DNA. In this review, I will summarize key findings on the non-canonical roles of apoptotic and DSB repair factors in disparate biological and pathological processes such as radiation-induced genetic instability and carcinogenesis, wound healing and tissue regeneration, induced pluripotent stem cell induction, spontaneous and stochastic generation of cancer stem cells, and cancer immunotherapy. I believe these findings will usher in more studies in this exciting and rapidly evolving field.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA Damage , DNA , Radiation, Ionizing
9.
Cancer Res ; 82(15): 2748-2760, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35648422

ABSTRACT

The type I interferon response plays a pivotal role in promoting antitumor immune activity in response to radiotherapy. The identification of approaches to boost the radiation-induced type I interferon response could help improve the efficacy of radiotherapy. Here we show that the histone methyltransferase SETDB1 is a potent suppressor of radiation-induced endogenous retrovirus expression. SETDB1 inhibition significantly enhanced the efficacy of radiotherapy by promoting radiation-induced viral mimicry to upregulate type I interferons. SETDB1 expression correlated with radiotherapy efficacy in human non-small cell carcinoma and melanoma patients. In a murine tumor model, genetic deletion of Setdb1 significantly enhanced radiotherapy efficacy, and Setdb1-deficient tumors had enhanced intratumoral lymphocyte infiltration, an observation confirmed in human cancer samples. Setdb1 deficiency led to increased basal and radiation-induced endogenous retrovirus (ERV) expression, enhanced MDA5/MAVS signaling, and upregulated type I interferons, which were essential for SETDB1 deficiency-induced radiosensitization. Taken together, these data suggest that inhibition of SETDB1 is a promising approach to enhance cancer radiotherapy efficacy by promoting radiation-induced viral mimicry and antitumor immunity through ERV induction. SIGNIFICANCE: The identification of the SETDB1-mediated suppression of radiotherapy-induced viral mimicry reveals SETDB1 inhibition as a potential approach to sensitize tumors to radiotherapy by enhancing the type I interferon response.


Subject(s)
Endogenous Retroviruses , Histone-Lysine N-Methyltransferase , Interferon Type I , Melanoma , Animals , Endogenous Retroviruses/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Interferon Type I/immunology , Melanoma/genetics , Melanoma/immunology , Melanoma/radiotherapy , Mice , Signal Transduction
10.
Cell Mol Life Sci ; 79(7): 352, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676564

ABSTRACT

Immune checkpoint blockade therapy has drastically improved the prognosis of certain advanced-stage cancers. However, low response rates and immune-related adverse events remain important limitations. Here, we report that inhibiting ALG3, an a-1,3-mannosyltransferase involved in protein glycosylation in the endoplasmic reticulum (ER), can boost the response of tumors to immune checkpoint blockade therapy. Deleting N-linked glycosylation gene ALG3 in mouse cancer cells substantially attenuates their growth in mice in a manner depending on cytotoxic T cells. Furthermore, ALG3 inhibition or N-linked glycosylation inhibitor tunicamycin treatment synergizes with anti-PD1 therapy in suppressing tumor growth in mouse models of cancer. Mechanistically, we found that inhibiting ALG3 induced deficiencies of post-translational N-linked glycosylation modification and led to excessive lipid accumulation through sterol-regulated element-binding protein (SREBP1)-dependent lipogenesis in cancer cells. N-linked glycosylation deficiency-mediated lipid hyperperoxidation induced immunogenic ferroptosis of cancer cells and promoted a pro-inflammatory microenvironment, which boosted anti-tumor immune responses. In human subjects with cancer, elevated levels of ALG3 expression in tumor tissues are associated with poor patient survival. Taken together, we reveal an unappreciated role of ALG3 in regulating tumor immunogenicity and propose a potential therapeutic strategy for enhancing cancer immunotherapy.


Subject(s)
Ferroptosis , Mannosyltransferases , Neoplasms , Animals , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Lipids , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Mice , Neoplasms/therapy
11.
Front Immunol ; 13: 751296, 2022.
Article in English | MEDLINE | ID: mdl-35296079

ABSTRACT

Alloreactive donor T cells undergo extensive metabolic reprogramming to become activated and induce graft-versus-host disease (GVHD) upon alloantigen encounter. It is generally thought that glycolysis, which promotes T cell growth and clonal expansion, is employed in this process. However, conflicting data have been reported regarding the requirement of glycolysis to induce T cell-mediated GVHD due to the lack of T cell-specific treatments using glycolysis inhibitors. Importantly, previous studies have not evaluated whether graft-versus-leukemia (GVL) activity is preserved in donor T cells deficient for glycolysis. As a critical component affecting the clinical outcome, it is necessary to assess the anti-tumor activity following treatment with metabolic modulators in preclinical models. In the present study, we utilized T cells selectively deficient for glucose transporter 1 (Glut1T-KO), to examine the role of glycolysis exclusively in alloreactive T cells without off-targeting effects from antigen presenting cells and other cell types that are dependent on glycolysis. We demonstrated that transfer of Glut1T-KO T cells significantly improved acute GVHD outcomes through increased apoptotic rates, impaired expansion, and decreased proinflammatory cytokine production. In addition to impaired GVHD development, donor Glut1T-KO T cells mediated sufficient GVL activity to protect recipients from tumor development. A clinically relevant approach using donor T cells treated with a small molecule inhibitor of glycolysis, 2-Deoxy-D-glucose ex vivo, further demonstrated protection from tumor development. These findings indicate that treatment with glycolysis inhibitors prior to transplantation selectively eliminates alloreactive T cells, but spares non-alloreactive T cells including those that protect against tumor growth. The present study has established a definitive role for glycolysis in acute GVHD and demonstrated that acute GVHD can be selectively prevented through targeting glycolysis.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glycolysis , Humans , T-Lymphocytes
12.
Carcinogenesis ; 43(1): 60-66, 2022 02 11.
Article in English | MEDLINE | ID: mdl-34643693

ABSTRACT

ATM (ataxia-telangiectasia mutated) is an important cell-cycle checkpoint kinase required for cellular response to DNA damage. Activated by DNA double strand breaks, ATM regulates the activities of many downstream proteins involved in various carcinogenic events. Therefore, ATM or its genetic variants may have a pleiotropic effect on cancer development. We conducted a pleiotropic analysis to evaluate associations between genetic variants of ATM and risk of multiple cancers. With genotyping data extracted from previously published genome-wide association studies of various cancers, we performed multivariate logistic regression analysis, followed by a meta-analysis for each cancer site, to identify cancer risk-associated single-nucleotide polymorphisms (SNPs). In the ASSET two-sided analysis, we found that two ATM SNPs were significantly associated with risk of multiple cancers. One tagging SNP (rs1800057 C>G) was associated with risk of multiple cancers (two-sided P = 5.27 × 10-7). Because ATM rs1800057 is a missense variant, we also explored the intermediate phenotypes through which this variant may confer risk of multiple cancers and identified a possible immune-mediated effect of this variant. Our findings indicate that genetic variants of ATM may have a pleiotropic effect on cancer risk and thus provide an important insight into common mechanisms of carcinogenesis.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Genetic Predisposition to Disease/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , DNA Breaks, Double-Stranded , DNA Damage/genetics , Humans , Phenotype
13.
Front Cell Dev Biol ; 9: 741074, 2021.
Article in English | MEDLINE | ID: mdl-34604239

ABSTRACT

Radioresistance conferred by cancer stem cells (CSCs) is the principal cause of the failure of cancer radiotherapy. Eradication of CSCs is a prime therapeutic target and a requirement for effective radiotherapy. Three dimensional (3D) cell-cultured model could mimic the morphology of cells in vivo and induce CSC properties. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in the regulation of radiosensitivity in cancers. In this study, we aim to investigate the effects of miRNAs on the radiosensitivity of 3D cultured stem-like cells. Using miRNA microarray analysis in 2D and 3D cell culture models, we found that the expression of miR-29b-3p was downregulated in 3D cultured A549 and MCF7 cells compared with monolayer (2D) cells. Clinic data analysis from The Cancer Genome Atlas database exhibited that miR-29b-3p high expression showed significant advantages in lung adenocarcinoma and breast invasive carcinoma patients' prognosis. The subsequent experiments proved that miR-29b-3p overexpression decreased the radioresistance of cells in 3D culture and tumors in vivo through interfering kinetics process of DNA damage repair and inhibiting oncogenes RBL1, PIK3R1, AKT2, and Bcl-2. In addition, miR-29b-3p knockdown enhanced cancer cells invasion and migration capability. MiR-29b-3p overexpression decreased the stemness of 3D cultured cells. In conclusion, our results demonstrate that miR-29b-3p could be a sensitizer of radiation killing in CSC-like cells via inhibiting oncogenes expression. MiR-29b-3p could be a novel therapeutic candidate target for radiotherapy.

14.
J Thorac Oncol ; 16(3): 419-427, 2021 03.
Article in English | MEDLINE | ID: mdl-33307194

ABSTRACT

INTRODUCTION: Identification of patients who can benefit from immune checkpoint blockade (ICB) therapy is key for improved clinical outcome. Recently, U.S. Food and Drug Administration approved tumor mutational burden (TMB) high (TMB-H or TMB ≥ 10) as a biomarker for pembrolizumab treatment of solid tumors. We intend to test the hypothesis that mutations in select genes may be a better predictor of NSCLC response to ICB therapy than TMB-H. METHODS: We compiled a list of candidate genes that may predict for benefits from ICB treatment by use of data from a recently published cohort of 350 patients with NSCLC. We then evaluated the influences of different mutation signatures in the candidate genes on ICB efficacy. They were also compared with TMB-H. The predictive powers of different mutation signatures were then evaluated in an independent cohort of patients with NSCLC treated with ICB. RESULTS: A compound mutation signature, in which two or more of the 52 candidate genes were mutated, accounted for 145 of 350 patients with NSCLC and was associated with considerable ICB treatment benefits. Specifically, the median duration of overall survival was 36 versus 8 months in NSCLC in those with two or more versus none of the 52 genes mutated. Moreover, those patients with the compound mutation signature but had low TMB (<10) achieved significant overall survival benefits when compared with those without the signature but had TMB-H (≥10). Finally, in an independent cohort of 156 patients with ICB-treated NSCLC, the median duration of progression-free survival was 8.3 months versus 3.5 months in those with the compound mutation signature versus those with none mutated in the 52 genes. CONCLUSIONS: A genetic signature with mutations in at least two of 52 candidate genes was superior than TMB-H in predicting clinical benefits for ICB therapy in patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation
15.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33290271

ABSTRACT

Novel approaches are needed to boost the efficacy of immune checkpoint blockade (ICB) therapy. Ataxia telangiectasia mutated (ATM) protein plays a central role in sensing DNA double-stranded breaks (DSBs) and coordinating their repair. Recent data indicated that ATM might be a promising target to enhance ICB therapy. However, the molecular mechanism involved has not been clearly elucidated. Here, we show that ATM inhibition could potentiate ICB therapy by promoting cytoplasmic leakage of mitochondrial DNA (mtDNA) and activation of the cGAS/STING pathway. We show that genetic depletion of ATM in murine cancer cells delayed tumor growth in syngeneic mouse hosts in a T cell-dependent manner. Furthermore, chemical inhibition of ATM potentiated anti-PD-1 therapy of mouse tumors. ATM inhibition potently activated the cGAS/STING pathway and enhanced lymphocyte infiltration into the tumor microenvironment by downregulating mitochondrial transcription factor A (TFAM), which led to mtDNA leakage into the cytoplasm. Moreover, our analysis of data from a large patient cohort indicated that ATM mutations, especially nonsense mutations, predicted for clinical benefits of ICB therapy. Our study therefore provides strong evidence that ATM may serve as both a therapeutic target and a biomarker to enable ICB therapy.


Subject(s)
DNA, Mitochondrial , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Membrane Proteins , Neoplasm Proteins , Neoplasms, Experimental , Nucleotidyltransferases , Signal Transduction , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/immunology , Cell Line, Tumor , Codon, Nonsense , DNA, Mitochondrial/genetics , DNA, Mitochondrial/immunology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology
16.
Nature ; 588(7839): 693-698, 2020 12.
Article in English | MEDLINE | ID: mdl-33177715

ABSTRACT

Despite its success in achieving the long-term survival of 10-30% of treated individuals, immune therapy is still ineffective for most patients with cancer1,2. Many efforts are therefore underway to identify new approaches that enhance such immune 'checkpoint' therapy3-5 (so called because its aim is to block proteins that inhibit checkpoint signalling pathways in T cells, thereby freeing those immune cells to target cancer cells). Here we show that inhibiting PCSK9-a key protein in the regulation of cholesterol metabolism6-8-can boost the response of tumours to immune checkpoint therapy, through a mechanism that is independent of PCSK9's cholesterol-regulating functions. Deleting the PCSK9 gene in mouse cancer cells substantially attenuates or prevents their growth in mice in a manner that depends on cytotoxic T cells. It also enhances the efficacy of immune therapy that is targeted at the checkpoint protein PD1. Furthermore, clinically approved PCSK9-neutralizing antibodies synergize with anti-PD1 therapy in suppressing tumour growth in mouse models of cancer. Inhibiting PCSK9-either through genetic deletion or using PCSK9 antibodies-increases the expression of major histocompatibility protein class I (MHC I) proteins on the tumour cell surface, promoting robust intratumoral infiltration of cytotoxic T cells. Mechanistically, we find that PCSK9 can disrupt the recycling of MHC I to the cell surface by associating with it physically and promoting its relocation and degradation in the lysosome. Together, these results suggest that inhibiting PCSK9 is a promising way to enhance immune checkpoint therapy for cancer.


Subject(s)
Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/immunology , PCSK9 Inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Lysosomes/metabolism , Mice , Neoplasms/metabolism , Neoplasms/pathology , Proprotein Convertase 9/deficiency , Proprotein Convertase 9/genetics , Proprotein Convertase 9/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Xenograft Model Antitumor Assays
18.
Proc Natl Acad Sci U S A ; 117(33): 19888-19895, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747552

ABSTRACT

More than 30% of genes in higher eukaryotes are regulated by RNA polymerase II (Pol II) promoter proximal pausing. Pausing is released by the positive transcription elongation factor complex (P-TEFb). However, the exact mechanism by which this occurs and whether phosphorylation of the carboxyl-terminal domain of Pol II is involved in the process remains unknown. We previously reported that JMJD5 could generate tailless nucleosomes at position +1 from transcription start sites (TSS), thus perhaps enable progression of Pol II. Here we find that knockout of JMJD5 leads to accumulation of nucleosomes at position +1. Absence of JMJD5 also results in loss of or lowered transcription of a large number of genes. Interestingly, we found that phosphorylation, by CDK9, of Ser2 within two neighboring heptad repeats in the carboxyl-terminal domain of Pol II, together with phosphorylation of Ser5 within the second repeat, HR-Ser2p (1, 2)-Ser5p (2) for short, allows Pol II to bind JMJD5 via engagement of the N-terminal domain of JMJD5. We suggest that these events bring JMJD5 near the nucleosome at position +1, thus allowing JMJD5 to clip histones on this nucleosome, a phenomenon that may contribute to release of Pol II pausing.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Histone Demethylases/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Line, Tumor , Cyclin-Dependent Kinase 9/genetics , Histone Demethylases/chemistry , Histone Demethylases/genetics , Humans , Nucleosomes/genetics , Nucleosomes/metabolism , Phosphorylation , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Domains , RNA Polymerase II/genetics
19.
Cell Biosci ; 10: 81, 2020.
Article in English | MEDLINE | ID: mdl-32566127

ABSTRACT

Limited mitochondria outer membrane permeability (MOMP) is a novel biological process where mammalian cells initiate the intrinsic apoptosis pathway with increased mitochondrial permeability but survive. One of the major consequences of limited MOMP is apoptotic endonuclease-induced DNA double strand breaks. Recent studies indicate that these DNA double stand breaks and ensuing activation of DNA damage response factors such as ATM play important but previously underappreciated roles in carcinogenesis and tumor growth. Furthermore, novel non-canonical roles of DNA repair factors such as ATM in tumor growth and treatment are also emerging. In this review, we try to summarize recent findings on this newly revealed link between DNA double strand break repair and cell death pathways.

20.
Radiat Res ; 193(4): 305-317, 2020 04.
Article in English | MEDLINE | ID: mdl-32074012

ABSTRACT

The generation of DNA double-strand breaks has historically been taught as the mechanism through which radiotherapy kills cancer cells. Recently, radiation-induced cytosolic DNA release and activation of the cGAS/STING pathway, with ensuing induction of interferon secretion and immune activation, have been recognized as important mechanisms for radiation-mediated anti-tumor efficacy. Here we demonstrate that radiation-induced activation of endogenous retroviruses (ERVs) also plays a major role in regulating the anti-tumor immune response during irradiation. Radiation-induced ERV-associated dsRNA transcription and subsequent activation of the innate antiviral MDA5/MAVS/TBK1 pathway led to downstream transcription of interferon-stimulated genes. Additionally, genetic knockout of KAP1, a chromatin modulator responsible for suppressing ERV transcription sites within the genome, enhanced the effect of radiation-induced anti-tumor response in vivo in two different tumor models. This anti-tumor response was immune-mediated and required an intact host immune system. Our findings indicate that radiation-induced ERV-dsRNA expression and subsequent immune response play critical roles in clinical radiotherapy, and manipulation of epigenetic regulators and the dsRNA-sensing innate immunity pathway could be promising targets to enhance the efficacy of radiotherapy and cancer immunotherapy.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , Immunity, Innate/immunology , Neoplasms/immunology , Neoplasms/radiotherapy , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Animals , Endogenous Retroviruses/genetics , Endogenous Retroviruses/radiation effects , Gene Expression Regulation, Neoplastic/radiation effects , Gene Knockout Techniques , Humans , Immunity, Innate/radiation effects , Immunotherapy/methods , Interferon-Induced Helicase, IFIH1/genetics , Mice , Neoplasms/genetics , Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Signal Transduction/radiation effects , Tripartite Motif-Containing Protein 28/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...