Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Talanta ; 275: 126186, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703482

ABSTRACT

Detection of procalcitonin (PCT) is crucial for the early identification of sepsis. PCT is primarily utilized in the multiple diagnosis of bacterial and viral illnesses along with to guide the application of antibiotics. Considering their advantages of high specificity and straightforward usage, electrochemical immunosensors offer significant application prospects in the detection of disease indicators. A dual-mode electrochemical immunosensor was constructed in this study to reliably identify PCT. In light of the synergistic effect of the dual-MOF derived heterostructure, the immunosensor demonstrating excellent square wave voltammetry (SWV) signals as well as significant catalytic activity for the H2O2 redox process. In addition to maintaining a low detection limit (SWV: 0.31 fg/mL and i-t: 0.098 fg/mL), the immunosensor offers an extensive linear response range (0.000001-100 ng/mL). The excellent performance is on account of the introduction of the local on-site sulfurized dual-MOF heterostructure with abundant metal chalcogenides/MOF interfaces, which boosts the specific surface area, offers an abundance of active sites, enhances conductivity, and raises catalytic activity. Furthermore, the immunosensor exhibits outstanding specificity, stability and reproducibility for the determination of PCT in serum, which is of great crucial for the clinical screening and diagnosis of sepsis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Procalcitonin , Procalcitonin/blood , Metal-Organic Frameworks/chemistry , Humans , Immunoassay/methods , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry
2.
J Am Chem Soc ; 145(49): 27010-27021, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37949810

ABSTRACT

Two-dimensional (2D) Pt-group ultrathin nanosheets (NSs) are promising advanced electrocatalysts for energy-related catalytic reactions. However, improving the electrocatalytic activity of 2D Pt-group NSs through the addition of abundant grain boundaries (GBs) and understanding the underlying formation mechanism remain significant challenges. Herein, we report the controllable synthesis of a series of Rh-based nanocrystals (e.g., Rh nanoparticles, Rh NSs, and Rh NSs with GBs) through a CO-mediated kinetic control synthesis route. In light of the 2D NSs' structural advantages and GB modification, the Rh NSs with rich GBs exhibit an enhanced electrocatalytic activity compared to pure Rh NSs and commercial Pt/C toward the hydrogen oxidation reaction (HOR) in alkaline media. Both experimental results and theoretical computations corroborate that the GBs in the Rh NSs have the capacity to ameliorate the adsorption free energy of reaction intermediates during the HOR, thus resulting in outstanding HOR catalytic performance. Our work offers novel perspectives in the realm of developing sophisticated 2D Pt-group metal electrocatalysts with rich GBs for the energy conversion field.

3.
Inorg Chem ; 62(19): 7324-7332, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37130306

ABSTRACT

Negative temperature coefficient (NTC) thermistors feature higher sensitivities and faster response speeds and thereby have particular applications in many fields. However, current NTC thermistors are mostly based on inorganic ceramic materials, which show obvious drawbacks in material synthesis, property modulation, and flexible film fabrication. Herein, we report, for the first time, the promising application of an inorganic-organic hybrid NTC thermistor. A new lead-free hybrid iodo bismuthate [1,1',1″-(benzene-1,3,5-triyl)tris(3-methyl-1H-imidazol-3-ium)]Bi2I9 [denoted as (Me3TMP)Bi2I9] was synthesized by a "double-free" strategy. (Me3TMP)Bi2I9 features a lead-free binuclear bismuth iodine anion charge compensated by a "classic hydrogen-bond-free" cation. (Me3TMP)Bi2I9 exhibits remarkable stability in water and UV light irradiation and shows the largest temperature sensitivity coefficient among all reported NTC materials. Theoretical calculation and detailed structural analysis disclose that the seriously distorted (BiI6) octahedra are responsible for the intriguing NTC effect for (Me3TMP)Bi2I9.

4.
Inorg Chem ; 62(12): 5032-5039, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36919994

ABSTRACT

Developing efficient atomic-scale metal-supported catalysts is of great significance for energy conversion technologies. However, the precise modulation of electron transfer between the metal and supporter in atomic-scale metal-supported catalysts to further improve the catalytic activity is still a major challenge. Herein, we show tunable electron transfer between atomic-scale Pt and tungsten nitride/oxide supports (namely, Pt/WN and Pt/W18O49). Pt/WN with modest electron exchange and Pt/W18O49 with aggressive electron exchange exhibit notably different catalytic activities for the alkaline hydrogen oxidation reaction (HOR), in which Pt/WN shows a 5.7-fold enhancement in HOR intrinsic catalytic performance in comparison to Pt/W18O49. Additionally, the tunable electronic transfer at the interface of Pt/WN and Pt/W18O49, as proven by the theoretical calculation, resulted in the discrepancy of the adsorption free energy of the reaction intermediates, as well as catalytic activity, for the HOR process. Our work provides new insights into the design of advanced atomic-scale metal-supported catalysts for electrocatalysis.

5.
J Colloid Interface Sci ; 629(Pt A): 44-52, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36049328

ABSTRACT

To solve the problem of dispersion of magnetic nanoparticles in ultralight electromagnetic absorption field, checkerboard-like nickel nanoislands/defect graphene aerogel (NIDG) with enhanced surface plasmon resonance was designed and prepared through electrostatic self-assembly method. This special structure successfully overcame the aggregation phenomenon of magnetic metals and built high-density gap regions to enhance surface plasmon resonance. And the NIDG has achieved excellent electromagnetic wave absorption performance in C band. Specially, NIDG is superior in ultra-lightness with only 6.2 wt%, compared to some recently reported magnetic electromagnetic wave absorbers. Such great performance can be attributed to the enhanced surface plasmon resonance and improved impedance matching. This work is significant for achieving effective dielectric loss and designing lightweight low-frequency EMW absorbing materials.

6.
7.
J Am Chem Soc ; 144(25): 11138-11147, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35674660

ABSTRACT

Developing efficient hydrogen oxidation reaction (HOR) electrocatalysts in alkaline media is of great significance for anion exchange membrane fuel cells. Herein, we report the synthesis of hollow colloidosomes composed of Ru nanocrystals based on a novel gas/liquid interface self-assembly strategy. Structural characterizations reveal that much defects are present in the building block (Ru nanocrystals) of Ru colloidosomes. Theoretical calculations suggest that the defects in the Ru structure can optimize the adsorption binding energy of reaction intermediates for the HOR. Benefiting from the assembled colloidosome and optimized electronic structure, the Ru colloidosomes exhibit remarkable HOR catalytic performance in alkaline media with a mass activity higher than that of benchmark Pt/C. Our work may shed new light on the rational design of advanced electrocatalysts with an assembled structure for energy-related applications.

8.
Chem Commun (Camb) ; 58(17): 2858-2861, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35129567

ABSTRACT

We report the thinnest copper sulfur atomic monolayer in an organic copper chalcogenide [Cu(CMP)]n (CMP = 5-chloro-2-mercaptopyridine). The layer features a new type of copper sulfur structure woven by both covalent bond and cuprophilic interaction and shows an intriguing oriented photoconductivity.

9.
J Colloid Interface Sci ; 612: 488-495, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34999553

ABSTRACT

Noble metals have been extensively employed as high active catalysts for oxygen evolution reaction (OER), are usually subjected to serious surface transformation and poor structural stability, especially in acid media, which need imperatively remedied. Herein, the interfacial engineering of Ru via few-layer carbon (Ru@FLC) was carried out, in which FLC can significantly suppress the corrosion of Ru in acid media, ensuring the efficient interfacial charge transport between Ru and FLC. As a result, a low overpotentials@10 mA cm-2 of 258 mV and small Tafel slopes of 53.1 mV dec-1 for oxygen evolution OER were achieved in acid media. DFT calculations disclose that outer FLC could induce charge redistribution and effectively optimize intermediates free energy adsorption, resulting in greatly reduce the energy barrier for OER. Our work may offer a new avenue to produce progressive OER electrocatalysts for energy-related applications in acid solution.

10.
ACS Appl Mater Interfaces ; 13(49): 58746-58753, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34865482

ABSTRACT

Low-cost flexible thermoelectric (TE) films with excellent cooling performance are critical for the in-plane heat dissipation application based on the TE film refrigeration technology. In this work, a flexible film epoxy/Bi0.5Sb1.5Te3 is developed by the incorporation of ferromagnetic Co nanoparticles to improve the electrical transport and cooling performance. The magnetic properties and microstructures clearly indicate that part of Co nanoparticles in situ reacts with Te from Bi0.5Sb1.5Te3 to form CoTe2, as well as BiTe' antisite defects. The electric conductivity is greatly enhanced because of the increased carrier density, while a large Seebeck coefficient is well maintained because of the extra magnetic scattering. The power factor of the flexible film with 0.2 wt % Co nanoparticles reached 2.28 mW·m-1·K-2 at 300 K, increased by 34% compared to the epoxy/Bi0.5Sb1.5Te3 film. The maximum cooling temperature difference is 1.5 times higher compared with the epoxy/Bi0.5Sb1.5Te3 film. This work provides a general method to improve the electrothermal conversion performance of BiSbTe-based flexible films through in situ reaction.

11.
Chem Sci ; 12(38): 12631-12639, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34703548

ABSTRACT

Some of the major difficulties hindering the synthesis of different types of colloidal nanocrystals are their complex synthetic methods and the lack of a universal growth mechanism in one system. Herein, we propose a general strategy of kinetically controlled seed-mediated growth to synthesize a family of penta-twinned gold nanocrystals. Specifically, different kinds of penta-twinned nanocrystals (truncated penta-twinned decahedra, truncated bipyramids, bipyramids, truncated bipyramids with tips, star-like penta-twinned nanocrystals, decahedra with concave edges, and decahedra) with tunable sizes and high purity were readily achieved in one system solely by tailoring the deposition kinetics of adatoms on different sites of decahedral seeds. The controllable deposition kinetics can be realized by changing the ratio of reductant/gold precursors (R), which dictates whether horizontal or vertical features along the 5-fold axis direction of Au decahedral seeds are produced. Additionally, the selective growth of a second metal (silver) on penta-twinned gold seeds can be reached through minor modification of R, which opens a new avenue for mechanistic investigation by visualizing the seed localization within the final particles. The present work demonstrates a general paradigm for the kinetic growth of penta-twinned crystals and would be extended to the synthesis of other families of nanocrystals.

12.
Angew Chem Int Ed Engl ; 60(39): 21575-21582, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34355481

ABSTRACT

The introduction of heteroatoms is one of the most important ways to modulate the intrinsic electronic structure of electrocatalysts to improve their catalytic activity. However, for transition metal chalcogenides with highly symmetric crystal structure (HS-TMC), the introduction of heteroatoms, especially those with large atomic radius, often induces large lattice distortion and vacancy defects, which may lead to structural phase transition of doped materials or structural phase reconstruction during the catalytic reaction. Such unpredictable situations will make it difficult to explore the connection between the intrinsic electronic structure of doped catalysts and catalytic activity. Herein, taking thermodynamically stable cubic CoSe2 phase as an example, we demonstrate that nitrogen incorporation can effectively regulate the intrinsic electronic structure of HS-TMC with structural phase stability and thus promote its electrocatalytic activity for the hydrogen evolution activity (HER). In contrast, the introduction of phosphorus can lead to structural phase transition from cubic CoSe2 to orthorhombic phase, and the structural phase of phosphorus-doped CoSe2 is unstable for HER.

13.
Rep Prog Phys ; 84(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34192673

ABSTRACT

Thermoelectric (TE) materials have great potential for waste-energyrecycling and solid-state cooling. Their conversion efficiency has attracted huge attention to the development of TE devices, and largely depends on the thermal and electrical transport properties. Magnetically enhanced thermoelectrics open up the possibility of making thermoelectricity a future leader in sustainable energy development and offer an intriguing platform for both fundamental physics and prospective applications. In this review, state-of-the-art TE materials are summarized from the magnetism point of view, via diagrams of the charges, lattices, orbits and spin degrees of freedom. Our fundamental knowledge of magnetically induced TE effects is discussed. The underlying thermo-electro-magnetic merits are discussed in terms of superparamagnetism- and magnetic-transition-enhanced electron scattering, field-dependent magnetoelectric coupling, and the magnon- and phonon-drag Seebeck effects. After these topics, we finally review several thermal-electronic and spin current-induced TE materials, highlight future possible strategies for further improvingZT, and also give a brief outline of ongoing research challenges and open questions in this nascent field.

14.
Chem Commun (Camb) ; 57(14): 1774-1777, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33475118

ABSTRACT

Nitrogen doped carbon functionalized CoSe2 nanowires (CoSe2@N-C NWs), which act as potential oxygen evolution reaction (OER) catalysts with a large current density and high stability have been reported. Owing to the collaborative optimization of electrical conductivity, free adsorption energy and binding strength of OER intermediates, the prepared CoSe2@N-C NWs exhibit an enhanced 6.61-fold catalytic activity compared to the pristine CoSe2 NW electrode in 1.0 M KOH solution at the overpotential of 340 mV.

15.
Nanoscale ; 13(1): 117-123, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33140814

ABSTRACT

Simultaneously maximizing the dispersion of noble metals and demonstrating optimal activity are of significant importance for designing stable metal catalysts. In this study, highly dispersed ultrafine platinum (Pt) particles with a size of <1.5 nm anchored onto a mesoporous CeO2 structure have been synthesized by coordinating Pt ions with amino groups in NH2-Ce-MOFs, followed by high-temperature calcination. It was found that the presence of -NH2 groups in Ce-MOFs played a crucial role in anchoring Pt species with high dispersion on the MOF framework. Interestingly, the anchored Pt species were beneficial for the formation of Ce-Pt sites during the conversion from Ce-BDC to CeO2. As a result, the as-prepared catalysts held dense surface peroxo species, responsible for boosting CO oxidation at low temperatures.

16.
ACS Appl Mater Interfaces ; 12(49): 54694-54702, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33216521

ABSTRACT

The employment of hybrid perovskite MAPbX3 (MA = CH3NH3+, X = Br or I) as photocatalysts in a photocatalytic hydrogen evolution reaction represents a promising approach to store solar energy. However, the toxicity of Pb makes these materials difficult to pass environmental evaluation while the intrinsic moisture sensitivity puts forward high anhydrous requirements in photocatalysts synthesis, storage, and application, which further reduces their service life. Herein, we demonstrate a hydrogen-bond-free strategy to synthesize moisture-stable hypotoxic hybrid perovskite for photocatalytic application by replacing traditional protonated countercations with alkylated countercations in a Pb-free hybrid system, which prevents water eroding hybrid perovskites via strong hydrogen bonds. A zero-dimensional Bi-based perovskite (3-ethylbenzo[d]thiazol-3-ium)4Bi2I10 (EtbtBi2I10) was synthesized, which contains dimeric (Bi2I10)4- formed by edge-sharing (BiI6) octahedra being different from the binuclear cluster in widely studied MA3Bi2I9. Theoretical calculations indicate that the electron communication between inorganic and organic moieties is responsible for its broadband absorption with a narrow band gap of 2.04 eV. EtbtBi2I10 exhibits excellent stability in distilled water, moisture air, acid solution, and UV-light irradiation. It shows effective photocatalytic performance in HI splitting to generate hydrogen with the performance comparable with MAPbI3. Introducing electron and hole-transporting channels drastically enhances the photocatalytic reaction.

17.
Chemistry ; 26(70): 16869-16874, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32955135

ABSTRACT

Although PtRu alloy nanocatalysts have been certified to possess excellent electrocatalytic performance and CO-poisoning tolerance toward formic acid and methanol electro-oxidation, the unaffordable usages of ruthenium (Ru) and platinum (Pt) have greatly limited their widespread adoption. Here, a facile one-pot method is reported for implanting atomic dispersed Ru in PtNi colloidal nanocrystal clusters with different Ru/Pt/Ni molar ratios, greatly reducing the dosages of Pt and Ru, and further improving the catalytic performances for the electro-oxidation of formic acid and methanol. Through simple control of the amount of Ni(acac)2 precursor, trimetallic Ru0.3 Pt70.5 Ni29.2 , Ru0.6 Pt55.9 Ni43.5 , Ru0.2 Pt77.3 Ni22.5 , and Ru0.9 Pt27.3 Ni71.8 colloidal nanocrystal clusters (CNCs) are obtained. In particular, the Ru0.3 Pt70.5 Ni29.2 CNCs exhibit excellent specific activities for formic acid and methanol electro-oxidation, that is, 14.2 and 15.3 times higher, respectively, than those of the Pt/C catalyst. Moreover, the Ru0.3 Pt70.5 Ni29.2 CNCs also possess better anti-CO-poisoning properties and diffusion ability than the other RuPtNi CNCs. The excellent formic acid and methanol electro-oxidation activities of RuPtNi CNCs are ascribed to the optimal ligand effects derived from the Pt, Ni, and atomic dispersed Ru atoms, which can improve the OH adsorption ability and further the anti-CO-poisoning capability. This research opens a new door for increasing the electro-oxidation properties of liquid fuels by using lower dosages of noble metals in Pt-based catalysts.

18.
Bioresour Technol ; 304: 123002, 2020 May.
Article in English | MEDLINE | ID: mdl-32078904

ABSTRACT

This study studied the change of functionalities in the biochar formed in pyrolysis of poplar wood in a wide range of temperature. The in situ Diffuse Reflectance Infrared Fourier transform spectroscopy characterization indicated that aldehydes and ketones functionalities formation initiated at 100 °C, dominated at 300 to 500 °C. Carboxyl group was less stable than carbonyls. Cellulose crystal in poplar decomposed slightly at 300 °C and significantly at 350 °C. The temperature from 250 to 350 °C significantly affected biochar yields, while the drastic fusion of the ring structures in biochar occurred from 550 to 650 °C, making biochar more aliphatic while less more aromatic. High pyrolysis temperature also created more defective structures in the biochar and favored the absorption of the CO2 generated during the pyrolysis. The results provide the reference information for understanding the structural configuration and evolution of the functionalities during in pyrolysis of poplar biomass.


Subject(s)
Populus , Pyrolysis , Charcoal , Hot Temperature , Temperature
19.
Chemistry ; 26(19): 4419-4424, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32027761

ABSTRACT

Heterogeneously catalyzed, selective hydrogenation in the liquid phase is widely used in industry for the synthesis of chemicals. However, it can be a challenge to prevent active nanoparticles (e.g., palladium) from aggregation/leaching and meanwhile achieve high conversion as well as selectivity, especially under mild conditions. To address these issues, a CeO2 nanotube/Pd@MIL-53(Al) sandwich-structured catalyst has been prepared in which the MIL-53(Al) porous shell can efficiently stabilize the palladium nanoparticles. When this catalyst was used in a tandem catalytic reaction involving the dehydrogenation of ammonia borane and the hydrogenation of phenylacetylene, remarkably, the hydrogen released from the dehydrogenation of ammonia borane boosted the catalytic process, with 100 % conversion of phenylacetylene and a selectivity of 96.2 % for styrene, even at room temperature and atmospheric pressure, within 1 min. This work therefore provides an alternative strategy for balancing the conversion and selectivity of liquid-phase hydrogenation reactions.

20.
ChemSusChem ; 13(10): 2671-2676, 2020 May 22.
Article in English | MEDLINE | ID: mdl-31965761

ABSTRACT

Great efforts have been made to understand and upgrade the kinetically sluggish oxygen evolution reaction (OER). In this study, a series of V-doped LaCoO3 (V-LCO) OER electrocatalysts with optimized d-band centers are fabricated. When utilized as an electrode for the OER, as-formed LaCo0.8 V0.2 O3 (V-LCO-II) requires an overpotential of only 306 mV to drive a geometrical catalytic current density of 10 mA cm-2 . Furthermore, at a given overpotential of 350 mV, the OER current density of V-LCO-II is about 22 times that of pure LaCoO3 (LCO) nanoparticles. Tailoring of the d-band center by V doping facilitates the adsorption of OER intermediates and promotes the formation of amorphous active species on the surface of LCO through the exchange interaction between high-spin V4+ and low-spin Co2+ . This work may create new opportunities for developing other highly active OER catalysts through d-band center engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...