Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
Front Plant Sci ; 15: 1444234, 2024.
Article in English | MEDLINE | ID: mdl-39157518

ABSTRACT

Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.

2.
Sci Data ; 11(1): 873, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138230

ABSTRACT

Dracaena cambodiana Pierre ex Gagn. (Asparagaceae) is the source plant of Dragon's blood and has high ornamental values in gardening. Currently, this species is classified as the second-class state-protected species in the National Key Protected Wild Plants (NKPWP) of China. However, limited genomic data has hindered a more comprehensive scientific understanding of the processes involved in the production of Dragon's blood and the related conservation genomics research. In this study, we assembled a haplotype-resolved genome of D. cambodiana. The haploid genomes, haplotype A and haplotype B, are 1,015.22 Mb and 1,003.13 Mb in size, respectively. The completeness of haplotype A and haplotype B genomes was 98.60% and 98.20%, respectively, using the "embryophyta_10" dataset. Haplotype A and haplotype B genomes contained 27,361 and 27,066 protein-coding genes, respectively, with nearly all being functionally annotated. These findings provide new insights into the genomic characteristics of D. cambodiana and will offer additional genomic resources for studying the biosynthesis mechanism of Dragon's blood and the horticultural application of Dragon trees.


Subject(s)
Dracaena , Genome, Plant , Haplotypes , Dracaena/genetics , China , Chromosomes, Plant/genetics , Plant Extracts
3.
Ecotoxicol Environ Saf ; 281: 116628, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905936

ABSTRACT

Microplastics (MPs) and okadaic acid (OA) are known to coexist in marine organisms, potentially impacting humans through food chain. However, the combined toxicity of OA and MPs remains unknown. In this study, mice were orally administered OA at 200 µg/kg bw and MPs at 2 mg/kg bw. The co-exposure group showed a significant increase in malondialdehyde (MDA) content and significant decreases in superoxide dismutase (SOD) activity and glutathione (GSH) level compared to the control, MPs and OA groups (p < 0.05). Additionally, the co-exposure group exhibited significantly higher levels of IL-1ß and IL-18 compared to other groups (p < 0.05). These results demonstrated that co-exposure to MPs and OA induces oxidative stress and exacerbates inflammation. Histological and cellular ultrastructure analyses suggested that this combined exposure may enhance gut damage and compromise barrier integrity. Consequently, the concentration of OA in the small intestine of the co-exposure group was significantly higher than that in the OA group. Furthermore, MPs were observed in the lamina propria of the gut in the co-exposure group. Transcriptomic analysis revealed that the co-exposure led to increased expression of certain genes related to the NF-κB/NLRP3 pathway compared to the OA and MPs groups. Overall, this combined exposure may disrupt the intestinal barrier, and promote inflammation through the NF-κB/NLRP3 pathway. These findings provide precious information for the understanding of health risks associated with MPs and phycotoxins.


Subject(s)
Intestine, Small , Microplastics , Okadaic Acid , Oxidative Stress , Polystyrenes , Animals , Microplastics/toxicity , Mice , Okadaic Acid/toxicity , Intestine, Small/drug effects , Intestine, Small/pathology , Intestine, Small/ultrastructure , Polystyrenes/toxicity , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Glutathione/metabolism , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
4.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759310

ABSTRACT

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Subject(s)
Biosensing Techniques , Cell Membrane , Electrochemical Techniques , Tin Compounds , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Animals , Rats , PC12 Cells , Tin Compounds/chemistry , Electrochemical Techniques/methods , Cell Membrane/chemistry , Cell Adhesion , Vibration , Surface Properties , Equipment Design
5.
ACS Nano ; 18(22): 14496-14506, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771969

ABSTRACT

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

6.
Talanta ; 274: 126010, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569372

ABSTRACT

Intracellular glucose detection is crucial due to its pivotal role in metabolism and various physiological processes. Precise glucose monitoring holds significance in diabetes management, metabolic studies, and biotechnological applications. In this study, we developed an innovative and expedient cell-permeable nanoreactor for intracellular glucose based on surface-enhanced Raman scattering (SERS). The nanoreactor was designed with gold nanoparticles (AuNPs), which were engineered with glucose oxide (GOx) and a H2O2-responsive Raman reporter 2-mercaptohydroquinone (2-MHQ). The interaction between 2-MHQ and H2O2 generated by glucose and GOx could simultaneously induce the appearance in the peak at 985 cm-1. Our results showed excellent performance in detecting glucose within the concentration range from 0.1 µM to 10 mM, with a low detection limitation of 14.72 nM. In addition, the glucose distribution in single HeLa cells was evaluated by real time SERS mapping. By combining noble metal particles and natural oxidases, the nanoreactor possesses both Raman activity and enzymatic functionality, thus enables sensitive glucose detection and facilitates imaging at a single cell level, which offers an insightful monitoring of cellular processes.


Subject(s)
Glucose , Gold , Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , HeLa Cells , Gold/chemistry , Metal Nanoparticles/chemistry , Glucose/analysis , Glucose/metabolism , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism
7.
ACS Sens ; 9(5): 2421-2428, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38644577

ABSTRACT

A core-shell nanostructure of gold nanoparticles@covalent organic framework (COF) loaded with palladium nanoparticles (AuNPs@COF-PdNPs) was designed for the rapid monitoring of catalytic reactions with surface-enhanced Raman spectroscopy (SERS). The nanostructure was prepared by coating the COF layer on AuNPs and then in situ synthesizing PdNPs within the COF shell. With the respective SERS activity and catalytic performance of the AuNP core and COF-PdNPs shell, the nanostructure can be directly used in the SERS study of the catalytic reaction processes. It was shown that the confinement effect of COF resulted in the high dispersity of PdNPs and outstanding catalytic activity of AuNPs@COF-PdNPs, thus improving the reaction rate constant of the AuNPs@COF-PdNPs-catalyzed hydrogenation reduction by 10 times higher than that obtained with Au/Pd NPs. In addition, the COF layer can serve as a protective shell to make AuNPs@COF-PdNPs possess excellent reusability. Moreover, the loading of PdNPs within the COF layer was found to be in favor of avoiding intermediate products to achieve a high total conversion rate. AuNPs@COF-PdNPs also showed great catalytic activities toward the Suzuki-Miyaura coupling reaction. Taken together, the proposed core-shell nanostructure has great potential in monitoring and exploring catalytic processes and interfacial reactions.


Subject(s)
Gold , Metal Nanoparticles , Palladium , Spectrum Analysis, Raman , Gold/chemistry , Spectrum Analysis, Raman/methods , Palladium/chemistry , Metal Nanoparticles/chemistry , Catalysis , Metal-Organic Frameworks/chemistry , Surface Properties , Hydrogenation
8.
J Hazard Mater ; 469: 133972, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461665

ABSTRACT

Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, ß-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Esters/metabolism , Phthalic Acids/metabolism , Dibutyl Phthalate/metabolism , Biodegradation, Environmental , Ecosystem , Diethylhexyl Phthalate/metabolism
9.
Talanta ; 273: 125931, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38518716

ABSTRACT

Tyrosinase (TYR) is an essential oxidase that is responsible for the regulation of multiple physiological processes and diseases. Achieving the trace and reliable detection of TYR in complex biological samples is of great significance for the diagnosis of TYR-related diseases, but which faces a great challenge. In this study, we developed an ingenious and powerful method for the ultrasensitive detection of TYR by click reaction-combined dark-field microscopy. This method begins with the formation of cuprous ions (Cu+) based on the reduction of copper ions (Cu2+) by ascorbic acid (AA). Subsequently, the formed Cu+ can catalyze the crosslinking between azide- and alkyne-functionalized gold nanoparticles, causing a significant red-shift in the scattering spectrum. However, AA can chelate with TYR, which inhibits the generation of Cu+ and subsequent click reaction, thus achieving TYR-controlled scattering spectral shift. The proposed sensing platform shows a good linear detection range of 0.01-0.8 U/L with a low detection limit of 0.003 U/L, which is three orders of magnitude lower than the best performance of TYR sensing probes reported to date. Most importantly, the strategy has the ability to reliably and accurately detect TYR in serum sample, suggesting its potential clinical application in diagnosing TYR-related diseases. This visual sensing platform offers promising prospects for future research in enzymatic analysis and biomedical diagnostics.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Monophenol Monooxygenase , Copper/analysis , Gold , Biosensing Techniques/methods , Ascorbic Acid , Ions , Click Chemistry/methods
10.
Mar Life Sci Technol ; 6(1): 168-181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38433963

ABSTRACT

Hadal trenches are characterized by enhanced and infrequent high-rate episodic sedimentation events that likely introduce not only labile organic carbon and key nutrients but also new microbes that significantly alter the subseafloor microbiosphere. Currently, the role of high-rate episodic sedimentation in controlling the composition of the hadal subseafloor microbiosphere is unknown. Here, analyses of carbon isotope composition in a ~ 750 cm long sediment core from the Challenger Deep revealed noncontinuous deposition, with anomalous 14C ages likely caused by seismically driven mass transport and the funneling effect of trench geomorphology. Microbial community composition and diverse enzyme activities in the upper ~ 27 cm differed from those at lower depths, probably due to sudden sediment deposition and differences in redox condition and organic matter availability. At lower depths, microbial population numbers, and composition remained relatively constant, except at some discrete depths with altered enzyme activity and microbial phyla abundance, possibly due to additional sudden sedimentation events of different magnitude. Evidence is provided of a unique role for high-rate episodic sedimentation events in controlling the subsurface microbiosphere in Earth's deepest ocean floor and highlight the need to perform thorough analysis over a large depth range to characterize hadal benthic populations. Such depositional processes are likely crucial in shaping deep-water geochemical environments and thereby the deep subseafloor biosphere. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00212-y.

11.
Biosens Bioelectron ; 250: 116054, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38295581

ABSTRACT

Hydrogen sulfide (H2S), an important gas signal molecule, participates in intercellular signal transmission and plays a considerable role in physiology and pathology. However, in-situ monitoring of H2S level during the processes of material transport between cells remains considerably challenging. Herein, a cell membrane-targeted surface-enhanced Raman scattering (SERS) nanoprobe was designed to quantitatively detect H2S secreted from living cells. The nanoprobes were fabricated by assembling cholesterol-functionalized DNA strands and dithiobis(phenylazide) (DTBPA) molecules on core-shell gold nanostars embedded with 4-mercaptoacetonitrile (4-MBN) (AuNPs@4-MBN@Au). Thus, three functions including cell-membrane targeted via cholesterol, internal standard calibration, and responsiveness to H2S through reduction of azide group in DTBPA molecules were integrated into the nanoprobes. In addition, the nanoprobes can quickly respond to H2S within 90 s and sensitively, selectively, and reliably detect H2S with a limit of detection as low as 37 nM due to internal standard-assisted calibration and reaction specificity. Moreover, the nanoprobes can effectively target on cell membrane and realize SERS visualization of dynamic H2S released from HeLa cells. By employing the proposed approach, an intriguing phenomenon was observed: the other two major endogenous gas transmitters, carbon monoxide (CO) and nitric oxide (NO), exhibited opposite effect on H2S production in living cells stimulated by related gas release molecules. In particular, the introduction of CO inhibited the generation of H2S in HeLa cells, while NO promoted its output. Thus, the nanoprobes can provide a robust method for investigating H2S-related extracellular metabolism and intercellular signaling transmission.


Subject(s)
Biosensing Techniques , Hydrogen Sulfide , Metal Nanoparticles , Humans , Hydrogen Sulfide/metabolism , HeLa Cells , Spectrum Analysis, Raman/methods , Gold , Nitric Oxide , Cell Membrane/metabolism , Cholesterol
12.
Anal Chem ; 96(4): 1506-1514, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38215343

ABSTRACT

The localized surface-plasmon resonance of the AuNP in aqueous media is extremely sensitive to environmental changes. By measuring the signal of plasmon scattering light, the dark-field microscopic (DFM) imaging technique has been used to monitor the aggregation of AuNPs, which has attracted great attention because of its simplicity, low cost, high sensitivity, and universal applicability. However, it is still challenging to interpret DFM images of AuNP aggregation due to the heterogeneous characteristics of the isolated and discontinuous color distribution. Herein, we introduce machine vision algorithms for the training of DFM images of AuNPs in different saline aqueous media. A visual deep learning framework based on AlexNet is constructed for studying the aggregation patterns of AuNPs in aqueous suspensions, which allows for rapid and accurate identification of the aggregation extent of AuNPs, with a prediction accuracy higher than 0.96. With the aid of machine learning analysis, we further demonstrate the prediction ability of various aggregation phenomena induced by both cation species and the concentration of the external saline solution. Our results suggest the great potential of machine vision frameworks in the accurate recognition of subtle pattern changes in DFM images, which can help researchers build predictive analytics based on DFM imaging data.

13.
Adv Mater ; 36(4): e2308180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37799108

ABSTRACT

Achieving aqueous solution enhanced room temperature phosphorescence (RTP) is critical for the applications of RTP materials in solution phase, but which faces a great challenge. Herein, for the first time, a strategy of coordination-induced structural rigidity is proposed to achieve enhanced quantum efficiency of aluminum/scandium-doped phosphorescent microcubes (Al/Sc-PMCs) in aqueous solution. The Al/Sc-PMCs in a dry state exhibit a nearly invisible blue RTP. However, they emit a strong RTP emission in aqueous solution with a RTP intensity increase of up to 22.16-times, which is opposite to common solution-quenched RTP. The RTP enhancement mechanism is attributed to the abundant metal sites (Al3+ and Sc3+ ions) on the Al/Sc-PMCs surface that can tightly combine with water molecules through the strong coordination. Subsequently, these coordinated water molecules as the bridging agent can bind with surface groups by hydrogen bonding interaction, thereby rigidifying chemical groups and inhibiting their motions, resulting in the transition from the nonradiative decay to the radiative decay, which greatly enhances the RTP efficiency of the Al/Sc-PMCs. This work not only develops a coordination rigidity strategy to enhance RTP intensity in aqueous solution, but also constructs a phosphorescent probe to achieve reliable and accurate determination of analyte in complex biological matrices.

14.
Ecotoxicol Environ Saf ; 269: 115740, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38042131

ABSTRACT

Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid ß-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.


Subject(s)
Dinoflagellida , Herbicides , Microalgae , Reactive Oxygen Species/metabolism , Proteomics , Dinoflagellida/metabolism , Harmful Algal Bloom , Photosynthesis , Herbicides/metabolism , Fatty Acids/metabolism , Triazines/toxicity , Triazines/metabolism
15.
Chemosphere ; 349: 140844, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042419

ABSTRACT

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Subject(s)
Dinoflagellida , Phosphorus , Phosphorus/metabolism , Membrane Lipids/metabolism , Dinoflagellida/metabolism , Harmful Algal Bloom , Phospholipids/metabolism , Autophagy
16.
Anal Chem ; 96(2): 701-709, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38157361

ABSTRACT

Despite rapid progress in metabolomics research, a major bottleneck is the large number of metabolites whose chemical structures are unknown or whose spectra have not been deposited in metabolomics databases. Nuclear magnetic resonance (NMR) spectroscopy has a long history of elucidating chemical structures from experimentally measured 1H and 13C chemical shifts. One approach to characterizing the chemical structures of an unknown metabolite is to predict the 1H and 13C chemical shifts of candidate compounds (e.g., metabolites from the Human Metabolome Database (HMDB)) and compare them with chemical shifts of the unknown. However, accurate prediction of NMR chemical shifts in aqueous solution is challenging due to limitations of experimental chemical shift libraries and the high computational cost of quantum chemical methods. To improve NMR prediction accuracy and applicability, an empirical prediction strategy is introduced here to provide an accurately predicted chemical shift for organic molecules and metabolites within seconds. Unique features of COLMARppm include (i) the training library exclusively consisting of high quality NMR spectra measured under standard conditions in aqueous solution, (ii) utilization of NMR motif information, and (iii) leveraging of the improved prediction accuracy for the automated assignment of experimental chemical shifts for candidate structures. COLMARppm is demonstrated in terms of accuracy and speed for a set of 20 compounds taken from the HMDB for chemical shift prediction and resonance assignment. COLMARppm is applicable to a wide range of small molecules and can be directly incorporated into metabolomics workflows.


Subject(s)
Magnetic Resonance Imaging , Metabolomics , Humans , Magnetic Resonance Spectroscopy/methods , Metabolome , Databases, Factual
17.
Water Res ; 250: 120987, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113594

ABSTRACT

Diuron (N-(3,4-dichlorophenyl)-N,N­dimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Humans , Diuron/toxicity , Proteomics , Dinoflagellida/physiology , Harmful Algal Bloom
18.
Appl Environ Microbiol ; 89(11): e0086723, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37850723

ABSTRACT

IMPORTANCE: Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate Karenia mikimotoi. Our work reveals the strong capability of K. mikimotoi to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.


Subject(s)
Dinoflagellida , Phosphorus , Harmful Algal Bloom , Phytoplankton , Phosphates
19.
Article in English | MEDLINE | ID: mdl-37880972

ABSTRACT

Cellular compartments provide confined environments for spatiotemporal control of biological processes and enzymatic reactions. To mimic such compartmentalization of eukaryotic cells, we report an efficient and general platform to precisely control the formation of artificial nanoreactors in single living cells. We introduce an electroosmotic controlled strategy for the synthesis of ZIF-8 at the nanoscale liquid-liquid interface around the tip of a nanopipet, whereby the formed ZIF-8 nanoparticles are driven into a single living cell by the electroosmotic flow. The porous ZIF-8 nanoparticles, as synthetic nanoreactors, are not only able to harvest fluorescent molecules from peripheral cytoplasm but also perform the subsequent photocatalytic degradation, mimicking compartmentalized chemical reactions in eukaryotic cells. Our strategy provides a useful tool for spatiotemporal controlled synthesis of artificial nanoreactors with on-demand functions in single living cells with versatile applications in chemical biology.

20.
Biomed Environ Sci ; 36(9): 800-813, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37803893

ABSTRACT

Objective: This study aimed to determine the HIV-1 subtype distribution and HIV drug resistance (HIVDR) in patients with ART failure from 2014 to 2020 in Hainan, China. Methods: A 7-year cross-sectional study was conducted among HIV/AIDS patients with ART failure in Hainan. We used online subtyping tools and the maximum likelihood phylogenetic tree to confirm the HIV subtypes with pol sequences. Drug resistance mutations (DRMs) were analyzed using the Stanford University HIV Drug Resistance Database. Results: A total of 307 HIV-infected patients with ART failure were included, and 241 available pol sequences were obtained. Among 241 patients, CRF01_AE accounted for 68.88%, followed by CRF07_BC (17.00%) and eight other subtypes (14.12%). The overall prevalence of HIVDR was 61.41%, and the HIVDR against non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide reverse transcriptase inhibitors (NRTIs), and protease inhibitors (PIs) were 59.75%, 45.64%, and 2.49%, respectively. Unemployed patients, hypoimmunity or opportunistic infections in individuals, and samples from 2017 to 2020 increased the odd ratios of HIVDR. Also, HIVDR was less likely to affect female patients. The common DRMs to NNRTIs were K103N (21.99%) and Y181C (20.33%), and M184V (28.21%) and K65R (19.09%) were the main DRMs against NRTIs. Conclusion: The present study highlights the HIV-1 subtype diversity in Hainan and the importance of HIVDR surveillance over a long period.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/toxicity , Reverse Transcriptase Inhibitors/therapeutic use , HIV-1/genetics , Cross-Sectional Studies , Phylogeny , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , Mutation , China/epidemiology , Prevalence , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL