Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 338: 139437, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37451636

ABSTRACT

Cadmium (Cd), is a well-known reproductive toxicant. The impacts of paternal Cd exposure on offspring glucose and lipid metabolism remain unclear, despite the abundance of adverse reports following early exposure from the mother. Here, we assessed paternally acquired metabolic derailment using a mouse model. LC-MS/MS, transcriptomics and molecular experimental techniques were subsequently applied in this study to explore the potential mechanism. We found that paternal Cd exposure caused glucose intolerance, lower insulin sensitivity and abnormal hepatic glycogen storage in adult female offspring, but not in males. LC-MS/MS data showed that hepatic phospholipids accumulation was also only observed in adult female offspring after paternal Cd exposure. Gene expression data showed that the level of insulin signaling and lipid transport-related genes was decreased in Cd-treated adult female offspring livers. Meanwhile, AHR, a transcription factor that combines with phospholipids to promote insulin resistance, was increased in Cd-treated adult female offspring livers. In addition, the escalation of the afore-mentioned lipid metabolites in the liver occurred as early as fetal stages in the female pups following paternal Cd exposure, suggesting the potential for these lipid species to be selected as early markers of disease for metabolic derailment later in life. Altogether, paternal Cd exposure causes offspring glucose metabolism disorder and phospholipids accumulation in a sex-dependent manner. This study provides a theoretical framework for future understanding of paternal-originated metabolic diseases.


Subject(s)
Cadmium , Insulin Resistance , Male , Humans , Female , Cadmium/toxicity , Phospholipids , Nuclear Family , Chromatography, Liquid , Tandem Mass Spectrometry , Fathers , Liver
2.
Food Chem Toxicol ; 179: 113967, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37506864

ABSTRACT

Cadmium (Cd), one of the most common contaminants in diet and drinking water, impairs testicular germ cell development and spermatogenesis. Autophagy is essential for maintaining Sertoli cell function and Sertoli-germ cell communication. However, the role of Sertoli cell autophagy in Cd-caused spermatogenesis disorder remains unclear. Here, the mice of autophagy-related gene 5 (Atg5) knockouts in Sertoli cells were used to investigate the effect of autophagy deficiency on Cd-impaired spermatogenesis and its underlying mechanisms. Results showed that Sertoli cell-specific knockout of Atg5 exacerbated Cd-reduced sperm count and MVH (a specific marker for testicular germ cells) level in mice. Additionally, Sertoli cell Atg5 deficiency reduced the number of spermatocytes and decreased the level of meiosis-related proteins (SYCP3 and STRA8) in Cd-treated mouse testes. Loss of Atg5 in Sertoli cell exacerbated Cd-reduced the level of retinoic acid (RA) and retinal dehydrogenase (ALDH1A1 and ALDH1A) in mouse testes. Meanwhile, we found that the level of transcription factor WT1 was significantly downregulated in Atg5-/- plus Cd-treated testes. Further experiments showed that Wt1 overexpression restored Cd-decreased the levels of ALDH1A1 in Sertoli cells. Collectively, the above data suggest that knockout of Atg5 in Sertoli cell enhances the susceptibility of Cd-impaired testicular spermatogenesis. These findings provide new insights into autophagy of Sertoli cell preventing environmental toxicants-impaired testicular spermatogenesis.


Subject(s)
Infertility, Male , Testis , Humans , Male , Mice , Animals , Sertoli Cells , Cadmium/metabolism , Semen , Spermatogenesis , Mice, Knockout , Autophagy-Related Protein 5
3.
Sci Total Environ ; 810: 152247, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34896485

ABSTRACT

Cadmium (Cd) is a well-known testicular toxicant. Blood-testis barrier (BTB), a vital part of testes, which has been reported to be damaged upon Cd exposure. However, the detailed mechanism about Cd-mediated disruption of BTB remains unclear. This study aims to investigate the role of Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress in Cd-mediated disruption of BTB. Male mice are intraperitoneally injected (i.p.) with melatonin (Mel, a cellular stress antagonist, 5.0 mg/kg) before Cd treatment (i.p., 2.0 mg/kg) for 8 h, and then treated with Cd for 0-48 h. Mouse Sertoli cells are pretreated with Mel (10 µM) for 1 h, and then treated with Cd (10 µM) for 0-24 h. We find that Cd damages the BTB and reduces the Occludin protein, a crucial BTB-related protein via activating p38/matrix metalloproteinase-2 (p38/MMP2) pathway and Integrated Stress Response (ISR). Further experiments reveal that the Heme-Regulated Inhibitor (HRI)-responsive mitochondrial stress is triggered in Cd-treated Sertoli cells. Most importantly, Cd-activated p38 signaling and ISR are regulated by HRI-responsive mitochondrial stress in Sertoli cells. Unexpectedly, we find that melatonin rescues the Cd-mediated disruption of BTB through blocking HRI-responsive mitochondrial stress in testes. Overall, these data indicate that environmental cadmium exposure impairs the BTB through activating HRI-responsive mitochondrial stress in Sertoli cells.


Subject(s)
Blood-Testis Barrier , Cadmium , Animals , Cadmium/toxicity , Heme , Male , Matrix Metalloproteinase 2 , Mice , Occludin , Testis
4.
Commun Biol ; 4(1): 1162, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34621005

ABSTRACT

Dopamine depletion and microstructural degradation underlie the neurodegenerative processes in Parkinson's disease (PD). To explore early alterations and underlying associations of dopamine and microstructure in PD patients utilizing the hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI). Twenty-five PD patients in early stages and twenty-four matched healthy controls underwent hybrid 18F-fluorodopa (DOPA) PET-diffusion tensor imaging (DTI) scanning. The striatal standardized uptake value ratio (SUVR), DTI maps (fractional anisotropy, FA; mean diffusivity, MD) in subcortical grey matter, and deterministic tractography of the nigrostriatal pathway were processed. Values in more affected (MA) side, less affected (LA) side and mean were analysed. Correlations and mediations among PET, DTI and clinical characteristics were further analysed. PD groups exhibited asymmetric pattern of dopaminergic dysfunction in putamen, impaired integrity in the microstructures (nigral FA, putaminal MD, and FA of nigrostriatal projection). On MA side, significant associations between DTI metrics (nigral FA, putaminal MD, and FA of nigrostriatal projection) and motor performance were significantly mediated by putaminal SUVR, respectively. Early asymmetric disruptions in putaminal dopamine concentrations and nigrostriatal pathway microstructure were detected using hybrid PET-MRI. The findings further implied that molecular degeneration mediates the modulation of microstructural disorganization on motor dysfunction in the early stages of PD.


Subject(s)
Dopamine/metabolism , Magnetic Resonance Imaging , Parkinson Disease/physiopathology , Positron-Emission Tomography , Putamen/physiopathology , Substantia Nigra/physiopathology , Aged , Aged, 80 and over , Dihydroxyphenylalanine/analogs & derivatives , Dihydroxyphenylalanine/chemistry , Dopaminergic Neurons , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Parkinson Disease/metabolism
5.
Ann Palliat Med ; 10(7): 7329-7339, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34263624

ABSTRACT

BACKGROUND: This study aimed to build a radiomics model with deep learning (DL) and human auditing and examine its diagnostic value in differentiating between coronavirus disease 2019 (COVID-19) and community-acquired pneumonia (CAP). METHODS: Forty-three COVID-19 patients, whose diagnoses had been confirmed with reverse-transcriptase polymerase-chain-reaction (RT-PCR) tests, and 60 CAP patients, whose diagnoses had been confirmed with sputum cultures, were enrolled in this retrospective study. The candidate regions of interest (ROIs) on the computed tomography (CT) images of the 103 patients were determined using a DL-based segmentation model powered by transfer learning. These ROIs were manually audited and corrected by 3 radiologists (with an average of 12 years of experience; range 6-17 years) to check the segmentation acceptance for the radiomics analysis. ROI-derived radiomics features were subsequently extracted to build the classification model and processed using 4 different algorithms (L1 regularization, Lasso, Ridge, and Z test) and 4 classifiers, including the logistic regression (LR), multi-layer perceptron (MLP), support vector machine (SVM), and extreme Gradient Boosting (XGboost). A receiver operating characteristic curve (ROC) analysis was conducted to evaluate the performance of the model. RESULTS: Quantitative CT measurements derived from human-audited segmentation results showed that COVID-19 patients had significantly decreased numbers of infected lobes compared to patients in the CAP group {median [interquartile range (IQR)]: 4 [3, 4] and 4 [4, 5]; P=0.031}. The infected percentage (%) of the whole lung was significantly more elevated in the CAP group [6.40 (2.77, 11.11)] than the COVID-19 group [1.83 (0.65, 4.42); P<0.001], and the same trend applied to each lobe, except for the superior lobe of the right lung [1.81 (0.09, 5.28) for COVID-19 vs. 1.32 (0.14, 7.02) for CAP; P=0.649]. Additionally, the highest proportion of infected lesions were observed in the CT value range of (-470, -370) Hounsfield units (HU) in the COVID-19 group. Conversely, the CAP group had a value range of (30, 60) HU. Radiomic model using corrected ROIs exhibited the highest area under ROC (AUC) of 0.990 [95% confidence interval (CI): 0.962-1.000] using Lasso for feature selection and MLP for classification. CONCLUSIONS: The proposed radiomics model based on human-audited segmentation made accurate differential diagnoses of COVID-19 and CAP. The quantification of CT measurements derived from DL could potentially be used as effective biomarkers in current clinical practice.


Subject(s)
COVID-19 , Deep Learning , Computers , Humans , Retrospective Studies , SARS-CoV-2
6.
J Magn Reson Imaging ; 54(3): 938-949, 2021 09.
Article in English | MEDLINE | ID: mdl-34014010

ABSTRACT

BACKGROUND: Flow related artifacts in continuous arterial spin labeling (cASL) zero-echo-time (ZTE) magnetic resonance angiography (MRA) could influence the vasculature visualization. PURPOSE: To investigate the clinical feasibility for the intracranial artery diseases assessment by utilizing hybrid ASL-ZTE-MRA (hASL-ZTE-MRA). STUDY TYPE: Prospective, technical development. POPULATION: Sixty-seven subjects with known/suspected cerebrovascular diseases. FIELD STRENGTH/SEQUENCE: Gradient echo based cASL-/hASL- ZTE-MRA at 3.0 T. ASSESSMENT: Subjective/objective evaluation for sound-levels. Image quality (IQ), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed within artery segments. Stenotic grading, aneurysm measurement, and signal intensity of lesions were further analyzed. STATISTICAL TESTS: Kolmogorov-Smirnov test for data normality check. Between two MRAs: Wilcoxon signed-rank test for sound experience/IQ ratings analysis; Paired t test for SNR/CNR comparison. One-way analysis of variance for sound intensity comparison. For stenosis grading/aneurysm measurement: Kendall's W test/intraclass correlation coefficient (ICC) for interobserver agreement test within each modality, weighted kappa statistics/ICC for intermodality agreement test between each MRA and computed tomography angiography. RESULTS: Sound-level perception/intensity was similar (P = 0.86, P = 0.55) between MRAs. The mean IQ score for hASL-ZTE-MRA was on diagnostic scale and slightly higher (P < 0.05) than that of cASL-ZTE-MRA. hASL-ZTE-MRA provided higher (P < 0.05) SNR/CNR than that of cASL-ZTE-MRA. Signal uniformity was improved on hASL-ZTE-MRA, particularly among the anterior circulation (P < 0.05). Comparing to cASL-ZTE-MRA, on hASL-ZTE-MRA, stenotic lesions were accurately assessed; flow in the stent or aneurysm remnant was better depicted (P < 0.05); AVM nidus was preferred with increased SNR (P < 0.05). No significant differences for the aneurysm measurement were found between MRAs (P = 0.95), in addition to the slightly higher SNR (P < 0.05) on hASL-ZTE-MRA. DATA CONCLUSION: Comparing to cASL-ZTE-MRA, hASL-ZTE-MRA is robust and feasible for the evaluation of intracranial artery diseases with diagnostic IQ, improved vessel contrast, and better signal heterogeneity. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: 2.


Subject(s)
Arteries , Magnetic Resonance Angiography , Feasibility Studies , Humans , Prospective Studies , Spin Labels
7.
Phys Chem Chem Phys ; 13(41): 18592-9, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21947307

ABSTRACT

Silica hollow nanospheres (SHNS) are used as new nanoscaffold materials to confine ammonia borane (NH(3)BH(3), AB) for enhancing the dehydrogenation process. Different loading levels of AB in SHNS are considered and AB/4SHNS (with AB content of approximately 20 wt%) shows the best result. The onset temperature of the dehydrogenation of AB in SHNS is as low as 70 °C with the peak temperature at 99 °C and no other gases such as borazine and ammonia are detected. Furthermore, within 60 min at 85 °C, 0.53 equivalent of hydrogen is released and the activation energy is 97.6 kJ mol(-1). Through FT-IR, Raman spectrum and density functional theory (DFT) calculation, it is found that nanoconfinement effect combined with SiO-HH-B interaction is essential for the enhancement of hydrogen releasing.

SELECTION OF CITATIONS
SEARCH DETAIL
...