Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130847, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490381

ABSTRACT

Getah virus (GETV) belongs to the Alphavirus genus in the Togaviridae family and is a zoonotic arbovirus causing disease in both humans and animals. The capsid protein (CP) of GETV regulates the viral core assembly, but the mechanism underlying this process is poorly understood. In this study, we demonstrate that CP undergoes liquid-liquid phase separation (LLPS) with the GETV genome RNA (gRNA) in vitro and forms cytoplasmic puncta in cells. Two regions of GETV gRNA (nucleotides 1-4000 and 5000-8000) enhance CP droplet formation in vitro and the lysine-rich Link region of CP is essential for its phase separation. CP(K/R) mutant with all lysines in the Link region replaced by arginines exhibits improved LLPS versus wild type (WT) CP, but CP(K/E) mutant with lysines substituted by glutamic acids virtually loses condensation ability. Consistently, recombinant virus mutant with CP(K/R) possesses significantly higher gRNA binding affinity, virion assembly efficiency and infectivity than the virus with WT-CP. Overall, our findings provide new insights into the understanding of GETV assembly and development of new antiviral drugs against alphaviruses.


Subject(s)
Alphavirus , Animals , Humans , Alphavirus/genetics , Alphavirus/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , RNA, Viral/genetics , RNA, Guide, CRISPR-Cas Systems , Genomics , Virion/genetics
2.
Phytomedicine ; 128: 155432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518645

ABSTRACT

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Saponins , Steroids , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Humans , Steroids/pharmacology , Steroids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Neoplasms/drug therapy , Animals , Apoptosis/drug effects
3.
Nat Commun ; 15(1): 1045, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316778

ABSTRACT

G-quadruplexes (G4s) can recruit transcription factors to activate gene expression, but detailed mechanisms remain enigmatic. Here, we demonstrate that G4s in the CCND1 promoter propel the motility in MAZ phase-separated condensates and subsequently activate CCND1 transcription. Zinc finger (ZF) 2 of MAZ is a responsible for G4 binding, while ZF3-5, but not a highly disordered region, is critical for MAZ condensation. MAZ nuclear puncta overlaps with signals of G4s and various coactivators including BRD4, MED1, CDK9 and active RNA polymerase II, as well as gene activation histone markers. MAZ mutants lacking either G4 binding or phase separation ability did not form nuclear puncta, and showed deficiencies in promoting hepatocellular carcinoma cell proliferation and xenograft tumor formation. Overall, we unveiled that G4s recruit MAZ to the CCND1 promoter and facilitate the motility in MAZ condensates that compartmentalize coactivators to activate CCND1 expression and subsequently exacerbate hepatocarcinogenesis.


Subject(s)
Cyclin D1 , DNA-Binding Proteins , G-Quadruplexes , Transcription Factors , Humans , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Zinc Fingers/genetics
4.
Commun Biol ; 6(1): 625, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301913

ABSTRACT

G-quadruplexes (G4s) regulate DNA replication and gene transcription, and are enriched in promoters without fully appreciated functional relevance. Here we show high selection pressure on putative G4 (pG4) forming sequences in promoters through investigating genetic and genomic data. Analyses of 76,156 whole-genome sequences reveal that G-tracts and connecting loops in promoter pG4s display lower or higher allele frequencies, respectively, than pG4-flanking regions, and central guanines (Gs) in G-tracts show higher selection pressure than other Gs. Additionally, pG4-promoters produce over 72.4% of transcripts, and promoter G4-containing genes are expressed at relatively high levels. Most genes repressed by TMPyP4, a G4-ligand, regulate epigenetic processes, and promoter G4s are enriched with gene activation histone marks, chromatin remodeler and transcription factor binding sites. Consistently, cis-expression quantitative trait loci (cis-eQTLs) are enriched in promoter pG4s and their G-tracts. Overall, our study demonstrates selective constraint of promoter G4s and reinforces their stimulative role in gene expression.


Subject(s)
G-Quadruplexes , Transcriptional Activation , Promoter Regions, Genetic , Genome , Genomics
5.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188909, 2023 07.
Article in English | MEDLINE | ID: mdl-37172651

ABSTRACT

As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.


Subject(s)
MicroRNAs , RNA, Circular , Humans , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger , Carcinogenesis/genetics , Cell Transformation, Neoplastic
6.
Cells ; 12(2)2023 01 04.
Article in English | MEDLINE | ID: mdl-36672157

ABSTRACT

Polydatin (PD) is a natural compound with anticancer activities, but the underlying mechanisms remain largely unclear. To understand how PD inhibited hepatocellular carcinoma (HCC), we studied PD treatments in HCC HepG2 and SK-HEP1 cells, and normal liver HL-7702 cells. PD selectively blocked the proliferation of HCC cells but showed low toxicity in normal cells, while the effects of doxorubicin (DOX) and cisplatin (DDP) on HCC and normal liver cells were opposite. In the cotreatment studies, PD synergistically improved the inhibitory activities of DOX and DDP in HCC cells but alleviated their toxicity in HL-7702 cells. Furthermore, RNA-seq studies of PD-treated HepG2 cells revealed multiple altered signaling pathways. We identified 1679 Differentially Expressed Genes (DEGs) with over a 2.0-fold change in response to PD treatment. Integrative analyses using the DEGs in PD-treated HepG2 cells and DEGs in a TCGA dataset of HCC patients revealed five PD-repressed DEGs regulating mitotic spindle midzone formation. The expression of these genes showed significantly positive correlation with poor clinical outcomes of HCC patients, suggesting that mitotic machinery was likely a primary target of PD. Our findings improve the understanding of PD's anticancer mechanisms and provide insights into developing effective clinical approaches in HCC therapies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Liver Neoplasms/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Cell Proliferation
7.
Int J Mol Sci ; 23(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35628304

ABSTRACT

In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid-liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.


Subject(s)
Neurodegenerative Diseases , Nucleic Acids , Humans , Proteins/metabolism
8.
Nucleic Acids Res ; 50(9): 4917-4937, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35390165

ABSTRACT

As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1's transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.


Subject(s)
Chromatin , Enhancer Elements, Genetic , YY1 Transcription Factor , Gene Expression Regulation , Histidine/chemistry , In Situ Hybridization, Fluorescence , Nuclear Proteins/metabolism , YY1 Transcription Factor/chemistry , YY1 Transcription Factor/metabolism
9.
Cancers (Basel) ; 14(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406384

ABSTRACT

Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.

10.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269825

ABSTRACT

Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Humans , Neoplasms/drug therapy , Oncogenes
11.
RNA Biol ; 18(sup1): 318-336, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34291726

ABSTRACT

ABBREVIATIONS: ARF: alternative reading frame, that is, p14ARF, or CDKN2A (cyclin-dependent kinase inhibitor 2A); ß-gal: ß-galactosidase; CLIP-seq: crosslinking and immunoprecipitation-sequencing; DMTF1: the cyclin D binding myb-like transcription factor 1; ESS/ESE: exonic splicing silencer/enhancer; Ex: exon; FBS: fetal bovine serum; Gluc: Gaussia luciferase; hnRNPs: heterogeneous nuclear ribonucleoproteins; In: intron; ISS/ISE: intronic splicing silencer/enhancer; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PSI: percent-splice-in; qPCR: quantitative real-time PCR; RIP: RNA immunoprecipitation; RNAseq: RNA sequencing; RT: reverse transcription; SF1: splicing factor 1; SR: serine/arginine-rich proteins; SRSF5: serine and arginine-rich splicing factor 5; TCGA: the cancer genome atlas; UCSC: University of California, Santa Cruz. WT: Wild type.


Subject(s)
Alternative Splicing , RNA Precursors/genetics , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/metabolism , Transcription Factors/genetics , Base Sequence , Humans , RNA Precursors/metabolism , RNA Splicing Factors/genetics , Sequence Homology , Serine-Arginine Splicing Factors/genetics , Transcription Factors/metabolism
12.
Cancers (Basel) ; 13(10)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065631

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a methyltransferase to mediate lysine 27 trimethylation in histone H3 (i.e., H3K27me3) and repress gene expression. In solid tumors, EZH2 promotes oncogenesis and is considered a therapeutic target. As a transcription factor, Yin Yang 1 (YY1) recruits EZH2 through its oncoprotein binding (OPB) domain to establish gene repression. In this study, we mapped the YY1 protein binding (YPB) domain on EZH2 to a region of 27 amino acids. Both YPB and OPB domain synthetic peptides could disrupt YY1EZH2 interaction, markedly reduce breast cancer cell viability, and efficiently inhibit tumor growth in a xenograft mouse model. We analyzed MDA-MB-231 cells treated with YPB, OPB, and control peptides by chromatin immunoprecipitation DNA sequencing (ChIP-seq) using an antibody against H3K27me3. YPB and OPB treatments altered H3K27me3 on 465 and 1137 genes, respectively, compared to the control. Of these genes, 145 overlapped between the two peptides. Among them, PTENP1, the PTEN pseudogene, showed reduced H3K27me3 signal when treated by either YPB or OPB peptide. Consistently, the two peptides enhanced both PTENP1 and PTEN expression with concomitantly reduced AKT activation. Further studies validated PTENP1's contribution to the anticancer activity of YPB and OPB peptides.

13.
Biochem Biophys Res Commun ; 561: 93-100, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34020144

ABSTRACT

AKT1 plays a key role in cell growth and survival, and its activation in cancers is mediated by different mechanisms. In this study, we investigated the potential of G-quadruplex (G4) formation by multiple consecutive G-tracts in the AKT1 promoter and its 3'-UTR. In circular dichroism analyses, synthetic oligonucleotides based on these G-tract regions showed molar ellipticity peaks at specific wavelengths of G4 structures. We verified G4 forming potential of these oligonucleotides using dimethyl sulfate footprinting, gel-shift and immunostaining assays. In reporter assays, mutations of the G-tracts in either the promoter or the 3'-UTR of AKT1 reduced expression mediated by these G-rich regions, suggesting positive regulation of AKT1 gene expression by these G4 structures. Furthermore, SP1 bound to its consensus sites regardless of the presence of G4 motifs in the AKT1 promoter, and both the G4 motifs and SP1 binding sites were needed to reach the strongest promoter strength.


Subject(s)
G-Quadruplexes , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , 3' Untranslated Regions , Binding Sites , Circular Dichroism/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/metabolism , Promoter Regions, Genetic
14.
Biochim Biophys Acta Gen Subj ; 1865(7): 129911, 2021 07.
Article in English | MEDLINE | ID: mdl-33862123

ABSTRACT

BACKGROUND: Ellagic acid (EA) possesses prominent inhibitory activities against various cancers, including hepatocellular carcinoma (HCC). Our recent study demonstrated EA's activities in reducing HCC cell proliferation and tumor formation. However, the mechanisms of EA to exert its anticancer activities and its primary targets in cancer cells have not been systematically explored. METHODS: Cell proliferation assay and flow cytometric analysis were used to examine the effects of EA treatment on viability and apoptosis, respectively, of HepG2 cells. RNA-seq studies and associated pathway analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to determine EA's primary targets. Differentially expressed genes (DEG) in EA-treated HepG2 cells were verified by RT-qPCR and Western blot. Integrative analyses of the RNA-seq dataset with a TCGA dataset derived from HCC patients were conducted to verify EA-targeted genes and signaling pathways. Interaction network analysis of the DEGs, shRNA-mediated knockdown, cell viability assay, and colony formation assay were used to validate EA's primary targets. RESULTS: EA reduced cell viability, caused DNA damage, and induced cell cycle arrest at G1 phase of HepG2 cells. We identified 5765 DEGs encoding proteins with over 2.0-fold changes in EA-treated HepG2 cells by DESeq2. These DEGs showed significant enrichment in the pathways regulating DNA replication and cell cycle progression. As primary targets, p21 was significantly upregulated, while MCM2-7 were uniformly downregulated in response to EA treatment. Consistently, p21 knockdown desensitized liver cells to EA in cell viability and colony formation assays. CONCLUSION: EA induced G1 phase arrest and promoted apoptosis of HCC cells through activating the p21 gene and downregulating the MCM2-7 genes, respectively. GENERAL SIGNIFICANCE: The discoveries in this study provide helpful insights into developing novel strategies in the therapeutic treatment of HCC patients.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , Ellagic Acid/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/metabolism , Transcriptome/drug effects , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Computational Biology , Gene Regulatory Networks , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA-Seq
15.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118951, 2021 04.
Article in English | MEDLINE | ID: mdl-33422616

ABSTRACT

Triple negative breast cancer (TNBC) has poor prognosis due to lack of biomarker and therapeutic target. Emerging research has revealed long noncoding RNAs (lncRNAs) are involved in breast cancer progression, but their functions and regulatory mechanisms remain poorly understood, especially in TNBC. In this study, we performed lncRNA microarray analysis of five TNBC samples and their matched normal tissues, and discovered a number of differentially expressed lncRNAs. We identified an antisense lncRNA, HYOU1-AS, which is transcribed from the opposite strand of the hypoxia up-regulated 1 (HYOU1) gene, enriched in the nucleus and highly expressed in TNBC. HYOU1-AS knockdown could inhibit the proliferation and migration of the TNBC MDA-MB-231 cells, and reduce their xenograft tumor formation in nude mice. In mechanistic studies, we found that HYOU1-AS could promote the expression of HYOU1, a proliferative gene, through competitively binding to hnRNPA1, an RNA-binding protein, to relieve its post-transcriptional inhibition of the HYOU1 mRNA. Consistently, increased HYOU1 levels correlated with poor clinical outcomes of breast cancer patients based on our study of the TCGA database. Overall, our data indicated that the lncRNA HYOU1-AS promoted TNBC progression through upregulating HYOU1.


Subject(s)
Gene Expression Profiling/methods , HSP70 Heat-Shock Proteins/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Triple Negative Breast Neoplasms/pathology , Up-Regulation , Animals , Binding, Competitive , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , Mice , Oligonucleotide Array Sequence Analysis , Survival Analysis , Transcriptional Activation , Triple Negative Breast Neoplasms/genetics
16.
Int J Oncol ; 58(1): 20-32, 2021 01.
Article in English | MEDLINE | ID: mdl-33367929

ABSTRACT

The cyclin D binding myb­like transcription factor 1 (DMTF1), a haplo­insufficient tumor suppressor gene, has 3 alternatively spliced mRNA isoforms encoding DMTF1α, ß and γ proteins. Previous studies have indicated a tumor suppressive role of DMTF1α and the oncogenic activity of DMTF1ß, while the function of DMTF1γ remains largely undetermined. In the present study, the mechanisms regulating DMTF1 isoform expression were investigated and the functional interplay of DMTF1ß and γ with DMTF1α was characterized. It was found that specific regions of DMTF1ß and γ transcripts can impair their mRNA integrity or stability, and thus reduce protein expression levels. Additionally, DMTF1ß and γ proteins exhibited a reduced stability compared to DMTF1α and all 3 DMTF1 isoforms were localized in the nuclei. Two basic residues, K52 and R53, in the DMTF1 isoforms determined their nuclear localization. Importantly, both DMTF1ß and γ could associate with DMTF1α and antagonize its transactivation of the ARF promoter. Consistently, the ratios of both DMTF1ß/α and γ/α were significantly associated with a poor prognoses of breast cancer patients, suggesting oncogenic roles of DMTF1ß and γ isoforms in breast cancer development.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , Alternative Splicing , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation/genetics , Female , Humans , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/genetics
17.
Front Pharmacol ; 11: 555283, 2020.
Article in English | MEDLINE | ID: mdl-33041795

ABSTRACT

Thymoquinone (TQ) is a natural compound extracted from the black seeds of Nigella sativa Linn. belonging to the Ranunculaceae family. TQ exhibits anti-inflammatory and antineoplastic activities against various cancers. Many therapeutics in hepatocellular carcinoma (HCC) treatments, such as doxorubicin (DOX) and cisplatin (DDP), exhibit considerable side effects on patients. We investigated cytotoxic effects of TQ, alone or in combination with DDP and DOX to HCC cells. TQ exhibited selective killing to HCC HepG2 and SMMC-7721 cells, but relatively low toxicity to normal liver HL-7702 cells. Importantly, when used with DOX or DDP, TQ showed synergistic inhibition of HCC cells, but not HL-7702 cells. We also discovered that Hep3B cells with a p53 null status were more sensitive to TQ than HepG2 and SMMC-7721 cells harboring wild type p53. Consistently, shRNA-mediated p53 silencing in HepG2 cells dramatically enhanced TQ-induced apoptosis, measured by caspase 3 and PARP cleavage. Furthermore, TQ-stimulated increase of reactive oxygen species (ROS) in p53-depleted cells was more pronounced than that in cells with intact p53. In summary, we discovered that TQ synergistically improves the anti-cancer activity of DOX and DDP, and loss of p53 sensitizes HCC cells to TQ-induced apoptosis.

18.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188410, 2020 12.
Article in English | MEDLINE | ID: mdl-32827579

ABSTRACT

Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.


Subject(s)
Neoplasms/genetics , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Small Molecule Libraries/pharmacology , Binding Sites , G-Quadruplexes/drug effects , Gene Expression Regulation, Neoplastic , Humans , Ligands , Neoplasms/drug therapy , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Small Molecule Libraries/therapeutic use , Up-Regulation
19.
Exp Cell Res ; 394(2): 112158, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32610184

ABSTRACT

SNAIL1 is a key regulator of epithelial-mesenchymal transition (EMT) and its expression is associated with tumor progression and poor clinical prognosis of cancer patients. Compared to the studies of SNAIL1 stability and its transcriptional regulation, very limited knowledge is available regarding effective approaches to directly target SNAIL1. In this study, we revealed the potential regulation of SNAIL1 gene expression by G-quadruplex structures in its promoter. We first revealed that the negative strand of the SNAIL1 promoter contained a multi-G-tract region with high potential of forming G-quadruplex structures. In circular dichroism studies, the oligonucleotide based on this region showed characteristic molar ellipticity at specific wavelengths of G-quadruplex structures. We also utilized native polyacrylamide gel electrophoresis, gel-shift assays, immunofluorescent staining, dimethyl sulfate footprinting and chromatin immunoprecipitation studies to verify the G-quadruplex structures formed by the oligonucleotide. In reporter assays, disruption of G-quadruplex potential increased SNAIL1 promoter-mediated transcription, suggesting that G-quadruplexes played a negative role in SNAIL1 expression. In a DNA synthesis study, we detected G-quadruplex-mediated retardation in the SNAIL1 promoter replication. Consistently, we discovered that the G-quadruplex region of the SNAIL1 promoter is highly enriched for mutations, implicating the clinical relevance of G-quadruplexes to the altered SNAIL1 expression in cancer cells.


Subject(s)
DNA Replication/genetics , G-Quadruplexes , Gene Expression Regulation , Promoter Regions, Genetic , Snail Family Transcription Factors/genetics , Base Sequence , Circular Dichroism , DNA/biosynthesis , DNA Footprinting , Genes, Reporter , Genome, Human , Humans , Transition Temperature
20.
Int J Mol Sci ; 21(2)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963946

ABSTRACT

Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.


Subject(s)
Gene Regulatory Networks , Prostatic Neoplasms/metabolism , Zinc/metabolism , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasm Metastasis , Prognosis , Signal Transduction , Zinc/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...