Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 283: 120426, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37898378

ABSTRACT

The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 µg/ml and a stepwise increase of 0.2 µg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15-45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.


Subject(s)
Anesthesia , Propofol , Humans , Propofol/pharmacology , Consciousness/physiology , Electroencephalography , Unconsciousness/chemically induced , Anesthetics, Intravenous/pharmacology
2.
Soft Matter ; 18(3): 640-647, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34931648

ABSTRACT

Mesoparticles consisting of a hard core and a soft corona like polymer-grafted nanoparticles (PGNPs) can assemble into various superlattice structures, in which each mesoparticle assumes the shape of the corresponding Wigner-Seitz (or Voronoi) cell. Conventional wisdom often perceives the stability of these superlattices in a mean-field view of surface area minimization or corona entropy maximization, which lacks molecular interpretation. We develop a simulation method to calculate the free energy cost to deform spherical PGNPs into Wigner-Seitz polyhedra, which are then relaxed in a certain crystalline superlattice. With this method, we successfully quantify the free energy differences between model BCC, FCC and A15 systems of PGNPs and identify BCC as the most stable structure in most cases. Analysis of polymer configurations in the corona, whose boundary is blurred by chain interpenetration, shows that the radial distribution of grafted chains and the corresponding entropy are almost identical between BCC and FCC, suggesting that the higher stability of the BCC structure cannot be explained by the mean-field description of the corona shape.

3.
Plant Cell ; 32(9): 2842-2854, 2020 09.
Article in English | MEDLINE | ID: mdl-32703817

ABSTRACT

In the ovules of most sexually reproducing plants, one hypodermal cell differentiates into a megaspore mother cell (MMC), which gives rise to the female germline. Trans-acting small interfering RNAs known as tasiR-ARFs have been suggested to act non-cell-autonomously to prevent the formation of multiple MMCs by repressing AUXIN RESPONSE FACTOR3 (ARF3) expression in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms are unknown. Here, we examined tasiR-ARF-related intercellular regulatory mechanisms. Expression analysis revealed that components of the tasiR-ARF biogenesis pathway are restricted to distinct ovule cell types, thus limiting tasiR-ARF production to the nucellar epidermis. We also provide data suggesting tasiR-ARF movement along the mediolateral axis into the hypodermal cells and basipetally into the chalaza. Furthermore, we used cell type-specific promoters to express ARF3m, which is resistant to tasiR-ARF regulation, in different ovule cell layers. ARF3m expression in hypodermal cells surrounding the MMC, but not in epidermal cells, led to a multiple-MMC phenotype, suggesting that tasiR-ARFs repress ARF3 in these hypodermal cells to suppress ectopic MMC fate. RNA sequencing analyses in plants with hypodermally expressed ARF3m showed that ARF3 potentially regulates MMC specification through phytohormone pathways. Our findings uncover intricate spatial restriction of tasiR-ARF biogenesis, which together with tasiR-ARF mobility enables cell-cell communication in MMC differentiation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , MicroRNAs/genetics , Ovule/cytology , RNA, Plant/metabolism , Arabidopsis/cytology , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Mutation , Ovule/physiology , Plant Cells/physiology , Plant Epidermis/genetics , Plants, Genetically Modified , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...