Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Sci Total Environ ; 944: 173873, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879035

ABSTRACT

In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed. In addition, we have tried to explain the interconnections between As transformation and carbon (C), such as microbial degradation of organic compounds and methane (CH4) emission. These processes can cause As release because of the reduction of arsenate (As(V)) to the more mobile arsenite (As(III)) as well as As methylation and the formation of toxic trivalent methylated As species in anaerobic conditions. Furthermore, the sulfur (S) transformation can form highly toxic thiolated As species owing to its interference with As biomethylation. Besides, we have focused on many other mutual interlinks that remain elusive between As and C, including As biomethylation, thiolation, and CH4 emission, in the soil-water systems. Recent developments have clarified the significant and complex interactions between the coupled microbial process in anoxic and submerged soils. These processes, performed by little-known/unknown microbial taxa or well-known members of microbial communities with unrecognized metabolic pathways, conducted several concurrent reactions that contributed to global warming on our planet and have unfavorable impacts on water quality and human food resources. Finally, some environmental implications in rice production and arsenic removal from soil-water systems are discussed. Generally, our understanding of the ecological and metabolic evidence for the coupling and synchronous processes of As, C, and S are involved in environmental contamination-caused toxicity in human food, including high As content in rice grain, water resources, and global warming through methanogenesis elucidate combating global rice safety, drinking water, and climate changes.

2.
ISME J ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900902

ABSTRACT

Arsenate reduction is a major cause of As release from soils which threatens more than 200 million people worldwide. While heterotrophic As(V) reduction has been investigated extensively, the mechanism of chemolithotrophic As(V) reduction is less studied. Since As is frequently found as sulfidic minerals in the environment, microbial mediated sulfur oxidation coupled to As(V) reduction (SOAsR), a chemolithotrophic process, may be more favorable in oligotrophic mining-impacted sites (e.g., As-contaminated mine tailings). While SOAsR is thermodynamically favorable, knowledge regarding this biogeochemical process is still limited. The current study suggested that SOAsR was a more prevalent process compared to heterotrophic As(V) reduction in oligotrophic sites, such as mine tailings. The water-soluble reduced sulfur concentration was predicted as one of the major geochemical parameters that substantially impacted SOAsR potentials. A combination of DNA-SIP and metagenome binning revealed members of the genera Sulfuricella, Ramlibacter, and Sulfuritalea as sulfur oxidizing As(V)-reducing bacteria (SOAsRB) in mine tailings. Genome mining further expanded the list of potential SOAsRBs to diverse phylogenetic lineages such as members associated with Burkholderiaceae and Rhodocyclaceae. Metagenome analysis using multiple tailing samples across southern China confirmed that the putative SOAsRB were the dominant As(V) reducers in these sites. Together, the current findings expand our knowledge regarding the chemolithotrophic As(V) reduction process, which may be harnessed to facilitate future remediation practices in mine tailings.

3.
Water Res ; 260: 121954, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38909421

ABSTRACT

Ferrous (Fe(II))-based oxygen activation for pollutant abatements in soil and groundwater has attracted great attention, while the low utilization and insufficient longevity of electron donors are the primary challenges to hinder its practical applications. Herein, we propose a nanoconfined Fe(II) releasing strategy that enables stable long-term electron donation for oxygen activation and efficient arsenic (As) immobilization under oxic conditions, by encapsulating zero-valent iron in biomass-derived carbon shell (ZVI@porous carbon composites; ZVI@PC). This strategy effectively enhances the generation of reactive oxygen species, enabling efficient oxidation and subsequent immobilization of As(III) in soils. Importantly, this Fe(II) releaser exhibits strong anti-interference capability against complex soil matrices, and the accompanying generation of Fe(III) enables As immobilization in soils, effectively lowering soil As bioavailability. Soil fixed-bed column experiments demonstrate a 79.5 % reduction of the total As in effluent with a simulated rainfall input for 10 years, indicating the excellent long-term stability for As immobilization in soil. Life cycle assessment results show that this Fe(II) releaser can substantially mitigate the negative environmental impacts. This work offers new insights into developing green and sustainable technologies for environmental remediation.

4.
J Hazard Mater ; 476: 134947, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38908180

ABSTRACT

Microbially-driven arsenic reduction and methane emissions in anaerobic soils are regulated by widespread humic substances (HS), while how this effect responds to climate change remains unknown. We investigated potential synergistic effects of HS in response to temperature changes in arsenic-contaminated paddy soils treated with humic acid (HA) and fulvic acid (FA) at temperatures ranging from 15 to 45 °C. Our results reveal a significant increase in arsenic reduction (5.6 times) and methane emissions (178 times) driven by HS, which can be exponentially stimulated at 45 °C. Acting as a electron shuttle, HS determines microbial arsenic reduction, further stimulated by warming. The top three sensitive genera are Geobacter, Anaeromyxobacter, and Gaiella which are responsible for enhanced arsenic reduction, as well as for the reduction of iron and HS with their functional genes; arrA and Geobacter spp. The top three sensitive methanogens are Methanosarsina, Methanocella, and Methanoculleus. Our study suggests notable synergistic effects between HS and warming in stimulating arsenic reduction and methanogenesis in paddy soils. Overall, the findings of this work highlight the high sensitivity of HS-mediated microbial arsenic transformation and methanogenesis in response to warming, which add potential value in predicting the biogeochemical cycling of arsenic and methane in soil under the context of climate change.

5.
J Agric Food Chem ; 72(3): 1500-1508, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38165827

ABSTRACT

Iron (Fe) isotopes were utilized to provide insights into the temporal changes underlying Fe uptake and translocation during rice growth (tillering, jointing, flowering, and maturity stages) in soil-rice systems under typical flooding-drainage alternation. Fe isotopic composition (δ56Fe values) of the soil solution generally decreased at vegetative stages in flooding regimes but increased during grain-filling. Fe plaques were the prevalent source of Fe uptake, as indicated by the concurrent increase in the δ56Fe values of Fe plaques and rice plants during rice growth. The increasing fractionation magnitude from stem/nodes I to flag leaves can be attributed to the preferred phloem transport of light isotopes toward grains, particularly during grain-filling. This study demonstrates that rice plants take up heavy Fe isotopes from Fe plaque and soil solution via strategy II during flooding and the subsequent drainage period, respectively, thereby providing valuable insights into improving the nutritional quality during rice production.


Subject(s)
Oryza , Soil Pollutants , Iron Isotopes , Plant Roots/chemistry , Soil Pollutants/analysis , Soil , Cadmium/analysis , Isotopes
6.
Environ Sci Technol ; 58(5): 2303-2312, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38263620

ABSTRACT

Dissimilatory arsenate reduction contributes a large proportion of arsenic flux from flooded paddy soil, which is closely linked to soil organic carbon input and efflux. Humic acid (HA) represents a natural ingredient in soil and is shown to enhance microbial arsenate respiration to promote arsenic mobility. However, the community and function profiles of metabolically active arsenate-respiring bacteria and their interactions with HA in paddy soil remain unclear. To probe this linkage, we performed a genome-centric comparison of potentially active arsenate-respiring bacteria in anaerobic microcosms amended with 13C-lactate and HA by combining stable-isotope probing with genome-resolved metagenomics. Indeed, HA greatly accelerated the microbial reduction of arsenate to arsenite. Enrichment of bacteria that harbor arsenate-respiring reductase genes (arrA) in HA-enriched 13C-DNA was confirmed by metagenomic binning, which are affiliated with Firmicutes (mainly Desulfitobacterium, Bacillus, Brevibacillus, and Clostridia) and Acidobacteria. Characterization of reference extracellular electron transfer (EET)-related genes in these arrA-harboring bacteria supports the presence of EET-like genes, with partial electron-transport chain genes identified. This suggests that Gram-positive Firmicutes- and Acidobacteria-related members may harbor unspecified EET-associated genes involved in metal reduction. Our findings highlight the link between soil HA and potentially active arsenate-respiring bacteria, which can be considered when using HA for arsenic removal.


Subject(s)
Arsenates , Arsenic , Humic Substances , Soil , Carbon , Bacteria/genetics , Soil Microbiology
7.
Environ Sci Technol ; 58(3): 1771-1782, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38086743

ABSTRACT

Biochar has demonstrated significant promise in addressing heavy metal contamination and methane (CH4) emissions in paddy soils; however, achieving a synergy between these two goals is challenging due to various variables, including the characteristics of biochar and soil properties that influence biochar's performance. Here, we successfully developed an interpretable multitask deep learning (MTDL) model by employing a tensor tracking paradigm to facilitate parameter sharing between two separate data sets, enabling a synergy between Cd and CH4 mitigation with biochar amendments. The characteristics of biochar contribute similar weightings of 67.9% and 62.5% to Cd and CH4 mitigation, respectively, but their relative importance in determining biochar's performance varies significantly. Notably, this MTDL model excels in custom-tailoring biochar to synergistically mitigate Cd and CH4 in paddy soils across a wide geographic range, surpassing traditional machine learning models. Our findings deepen our understanding of the interactive effects of Cd and CH4 mitigation with biochar amendments in paddy soils, and they also potentially extend the application of artificial intelligence in sustainable environmental remediation, especially when dealing with multiple objectives.


Subject(s)
Deep Learning , Oryza , Soil , Cadmium , Methane , Artificial Intelligence , Charcoal
8.
Sci Total Environ ; 912: 169034, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38061649

ABSTRACT

In situ stabilization technologies based on lime-derived materials are extensively used for remediating Cd-contaminated paddy soils. However, the environmental impacts and carbon budget associated with these technologies throughout the paddy soil remediation life cycle are gaining increasing attention. Herein, through paddy field trials, two representative lime-derived materials, quicklime and calcium-silicon composite (Ca/Si), are evaluated for their remediation effectiveness and environmental sustainability in the remediation of Cd-contaminated soils. The results demonstrate that both quicklime and Ca/Si can reduce Cd bioavailability and enable the safe use of rice grain. Nevertheless, the life cycle assessment score of the quicklime case is 4.4 times that of the Ca/Si case, indicating that the quicklime case has a greater negative impact on the environment. Furthermore, the net ecosystem carbon budget analysis reveals that both lime-derived materials exhibit outward carbon emissions throughout their life cycle, in which the carbon emission of the quicklime case (-20.2 t CO2-eq/ha) is 20 times that of the Ca/Si case (-1 t CO2-eq/ha). Moreover, the implementation of carbon capture technology results in the Ca/Si case achieving a positive carbon budget and contributing to a carbon neutrality plan. Conversely, the quicklime case falls short, affording only a 24.8 % reduction in carbon emissions. Overall, this study provides valuable insights into the environmental sustainability of different lime-derived materials for paddy soil remediation and carbon mitigation.

9.
Sci Total Environ ; 912: 168720, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008321

ABSTRACT

Nitrate (NO3-)-reducing Fe(II) oxidation (NRFO) is prevalent in anoxic environments. However, it is uncertain in which step(s) the biological Fe(II) oxidation is coupled with denitrification during NRFO. In this study, a heterotrophic NRFO bacterium, Diaphorobacter caeni LI3T, was isolated from paddy soil and used to investigate the transformation of Fe(II) and nitrogen as well as nitrogen isotopic fractionation (δ15N-N2O) during NRFO. Fe(II) oxidation was observed in the Cell+NO3- +Fe(II), Cell+NO2- + Fe(II), and NO2- + Fe(II) treatments, resulting in precipitation of amorphous Fe(III) minerals and lepidocrocite on the surface and in the periplasm of cells. The presence of Fe(II) slightly accelerated microbial NO3- reduction in the Cell+NO3- + Fe(II) treatment relative to the Cell+NO3- treatment, but slowed down the NO2- reduction in the Cell+NO2- + Fe(II) treatment relative to the Cell+NO2- treatment likely due to cell encrustation that blocking microbial NO2- reduction in the periplasm. The δ15N-N2O results in the Cell+NO3- + Fe(II) treatment were close to those in the Cell+NO3- and Cell+NO2- treatments, indicating that the accumulative N2O is primarily of biological origin during NRFO. The genome analysis found a complete set of denitrification and oxidative phosphorylation genes in strain LI3T, the metabolic pathways of which were closely related with cyc2 and cytc as indicated by protein-protein interactions network analysis. It is proposed that Fe(II) oxidation is catalyzed by the outer membrane protein Cyc2, with the resulting electrons being transferred to the nitrite reductase NirS via CytC in the periplasm, and the CytC can also accept electrons from the oxidative phosphorylation in the cytoplasmic membrane. Overall, our findings provide new insights into the potential pathways of biological Fe(II) oxidation coupled with nitrate reduction in heterotrophic NRFO bacteria.


Subject(s)
Ferric Compounds , Nitrates , Nitrates/metabolism , Ferric Compounds/metabolism , Nitrites/metabolism , Nitrogen Isotopes , Nitrogen Dioxide/metabolism , Oxidation-Reduction , Bacteria/metabolism , Nitrogen/metabolism , Ferrous Compounds/metabolism , Denitrification
10.
Food Chem ; 437(Pt 2): 137917, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37944391

ABSTRACT

A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.


Subject(s)
Organophosphates , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Organophosphates/analysis , Esters/analysis , Ultrasonics , Lactuca , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid
11.
J Environ Sci (China) ; 138: 19-31, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135388

ABSTRACT

Zero-valent iron (ZVI) is a promising material for the remediation of Cd-contaminated paddy soils. However, the effects of ZVI added during flooding or drainage processes on cadmium (Cd) retention remain unclear. Herein, Cd-contaminated paddy soil was incubated for 40 days of flooding and then for 15 days of drainage, and the underlying mechanisms of Cd immobilization coupled with Fe/S/N redox processes were investigated. The addition of ZVI to the flooding process was more conducive to Cd immobilization. Less potential available Cd was detected by adding ZVI before flooding, which may be due to the increase in paddy soil pH and newly formed secondary Fe minerals. Moreover, the reductive dissolution of Fe minerals promoted the release of soil colloids, thereby increasing significantly the surface sites and causing Cd immobilization. Additionally, the addition of ZVI before flooding played a vital role in Cd retention after soil drainage. In contrast, the addition of ZVI in the drainage phase was not conducive to Cd retention, which might be due to the rapid decrease in soil pH that inhibited Cd adsorption and further immobilization on soil surfaces. The findings of this study demonstrated that Cd availability in paddy soil was largely reduced by adding ZVI during the flooding period and provide a novel insight into the mechanisms of ZVI remediation in Cd-contaminated paddy soils.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Iron , Soil , Soil Pollutants/analysis , Minerals
12.
Environ Sci Technol ; 57(50): 21156-21167, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38064275

ABSTRACT

Microbial nitrate reduction can drive Fe(II) oxidation in anoxic environments, affecting the nitrous oxide emission and ammonium availability. The nitrate-reducing Fe(II) oxidation usually causes severe cell encrustation via chemodenitrification and potentially inhibits bacterial activity due to the blocking effect of secondary minerals. However, it remains unclear how Fe(II) oxidation and subsequent cell encrustation affect the functional genes and bacteria for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Here, bacteria were enriched from different paddy soils with and without Fe(II) under nitrate-reducing conditions. Fe(II) addition decelerated nitrate reduction and increased NO2- accumulation, due to the rapid Fe(II) oxidation and cell encrustation in the periplasm and on the cell surface. The N2O accumulation was lower in the treatment with Fe(II) and nitrate than that in the treatment with nitrate only, although the proportions of N2O and NH4+ to the reduced NO3- were low (3.25% ∼ 6.51%) at the end of incubation regardless of Fe(II) addition. The dominant bacteria varied from soils under nitrate-reducing conditions, while Fe(II) addition shaped a similar microbial community, including Dechloromonas, Azospira, and Pseudomonas. Fe(II) addition increased the relative abundance of napAB, nirS, norBC, nosZ, and nirBD genes but decreased that of narG and nrfA, suggesting that Fe(II) oxidation favored denitrification in the periplasm and NO2--to-NH4+ reduction in the cytoplasm. Dechloromonas dominated the NO2--to-N2O reduction, while Thauera mediated the periplasmic nitrate reduction and cytoplasmic NO2--to-NH4+ during Fe(II) oxidation. However, Thauera showed much lower abundance than the dominant genera, resulting in slow nitrate reduction and limited NH4+ production. These findings provide new insights into the response of denitrification and DNRA bacteria to Fe(II) oxidation and cell encrustation in anoxic environments.


Subject(s)
Ammonium Compounds , Nitrates , Nitrates/metabolism , Ammonium Compounds/metabolism , Nitrites/metabolism , Soil , Denitrification , Nitrogen Dioxide , Bacteria/genetics , Bacteria/metabolism , Oxidation-Reduction , Ferrous Compounds/metabolism , Nitrogen/metabolism
13.
Environ Sci Technol ; 57(46): 17920-17929, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37755710

ABSTRACT

Anions accompanying inorganic fertilizers, such as chloride and sulfate ions, potentially affect the solubility, uptake, and transport of Cd to rice grains. However, the role of anions in controlling Cd transport in the soil-soil solution-Fe plaque-rice plant continuum remains poorly understood. Cd isotope ratios were applied to Cd-contaminated soil pots, hydroponic rice, and adsorption experiments with or without KCl and K2SO4 treatments to decipher transport processes in the complex soil-rice system. The chloride and sulfate ions increased the Cd concentrations in the soil solution, Fe plaque, and rice plants. Accordingly, the magnitude of positive fractionation from soil to the soil solution was less pronounced, but that between soil and Fe plaque or rice plant is barely varied. The similar isotope composition of Fe plaque and soil, and the similar fractionation magnitude between Fe plaque and the solution and between goethite and the solution, suggested that desorption-sorption between iron oxides and the solution could be important at the soil-soil solution-Fe plaque continuum. This study reveals the roles of chloride and sulfate ions: (i) induce the mobility of light Cd isotopes from soil to the soil solution, (ii) chloro-Cd and sulfato-Cd complexes contribute to Cd immobilization in the Fe plaque and uptake into roots, and (iii) facilitate second leaves/node II-to-grain Cd transport within shoots. These results provide insights into the anion-induced Cd isotope effect in the soil-rice system and the roles of anions in facilitating Cd migration and transformation.


Subject(s)
Oryza , Soil Pollutants , Iron , Cadmium , Chlorides/pharmacology , Soil , Sulfates , Isotopes/pharmacology , Plant Roots/chemistry
14.
Sci Total Environ ; 900: 166435, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37598957

ABSTRACT

Cd speciation in soil and its transport to rice roots are influenced by the soil pH, oxidation-reduction potential, and mineral transformation; however, the immobilization and migration of Cd in soil-rice systems with different pH values under distinct water regimes remain unclear. This study used Cd isotope fractionation, soil physical analysis, and root gene quantification to elucidate the immobilization and transport of Cd in different soil-rice systems. In drainage soils, the high soil pH enhanced the transformation and magnitude of negative fractionation of Cd from MgCl2 extract to FeMn oxide-bound pool; however, it favored Cd uptake and root-to-grain transport. Compared with drainage regimes, the flooding regimes shifted fractionation toward heavy isotopes from MgCl2-extracted Cd to FeMn oxide-bound Cd in acidic soils (∆114/110CdMgCl2 extract - FeMn oxide-bound Cd = -0.09 ± 0.03 ‰) and to light isotopes from MgCl2-extracted Cd to carbonate-bound Cd in neutral and alkaline soils (∆114/110CdMgCl2 extract - carbonate-bound Cd = 0.29-0.40 ‰). The submerged soils facilitated the forming of carbonate and poorly crystalline minerals (such as ferrihydrite), which were transformed into highly crystalline forms (such as goethite). These results demonstrated that the dissolution-precipitation process of iron oxides was essential for controlling soil Cd availability under flooding regimes, and the relative contribution of carbonate minerals to Cd immobilization was promoted by a high soil pH. Flooding regimes induced lower expressions of OsNRAMP1 and OsNRAMP5 to limit the uptake of light Cd isotopes from MgCl2-extract pool, whereas a teeter-totter effect on gene expression patterns in roots (including those of OsHMA3 and OsHMA2) limited the transport of heavy Cd isotopes from root to grain. These findings demonstrate that flooding regimes could exert multiple effects on soil Cd immobilization and Cd transport to grain. Moreover, alkaline soil was conducive to forming carbonate minerals to sequester Cd.


Subject(s)
Oryza , Cadmium , Magnesium Chloride , Edible Grain , Isotopes , Minerals , Oxides , Plant Extracts , Hydrogen-Ion Concentration
15.
Environ Sci Technol ; 57(33): 12546-12555, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37535944

ABSTRACT

Microbially mediated nitrate reduction coupled with Fe(II) oxidation (NRFO) plays an important role in the Fe/N interactions in pH-neutral anoxic environments. However, the relative contributions of the chemical and microbial processes to NRFO are still unclear. In this study, N-O isotope fractionation during NRFO was investigated. The ratios of O and N isotope enrichment factors (18ε:15ε)-NO3- indicated that the main nitrate reductase functioning in Acidovorax sp. strain BoFeN1 was membrane-bound dissimilatory nitrate reductase (Nar). N-O isotope fractionation during chemodenitrification [Fe(II) + NO2-], microbial nitrite reduction (cells + NO2-), and the coupled process [cells + NO2- + Fe(II)] was explored. The ratios of (18ε:15ε)-NO2- were 0.58 ± 0.05 during chemodenitrification and -0.41 ± 0.11 during microbial nitrite reduction, indicating that N-O isotopes can be used to distinguish chemical from biological reactions. The (18ε:15ε)-NO2- of 0.70 ± 0.05 during the coupled process was close to that obtained for chemodenitrification, indicating that chemodenitrification played a more important role than biological reactions during the coupled process. The results of kinetic modeling showed that the relative contribution of chemodenitrification was 99.3% during the coupled process, which was consistent with that of isotope fractionation. This study provides a better understanding of chemical and biological mechanisms of NRFO using N-O isotopes and kinetic modeling.


Subject(s)
Comamonadaceae , Nitrates , Nitrites , Nitrogen Dioxide , Oxidation-Reduction , Organic Chemicals , Isotopes , Ferrous Compounds
16.
Water Res ; 242: 120286, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37399690

ABSTRACT

Arsenic (As) from mine wastewater is a significant source for acidic paddy soil pollution, and its mobility can be influenced by alternating redox conditions. However, mechanistic and quantitative insights into the biogeochemical cycles of exogenous As in paddy soil are still lacking. Herein, the variations of As species in paddy soil spiking with As(III) or As(V) were investigated in the process of 40 d of flooding followed 20 d of drainage. During flooding process, available As was immobilized in paddy soil spiking As(III) and the immobilized As was activated in paddy soil spiking As(V) owing to deprotonation. The contributions of Fe oxyhydroxides and humic substances (HS) to As immobilization in paddy soil spiking As(III) were 80.16% and 18.64%, respectively. Whereas the contributions of Fe oxyhydroxides and HS to As activation in paddy soil spiking As(V) were 47.9% and 52.1%, respectively. After entering drainage, available As was mainly immobilized by Fe oxyhydroxides and HS and adsorbed As(III) was oxidized. The contribution of Fe oxyhydroxides to As fixation in paddy soil spiking As(III) and As(V) was 88.82% and 90.26%, respectively, and of HS to As fixation in paddy soil spiking As(III) and As(V) was 11.12% and 8.95%, respectively. Based on the model fitting results, the activation of Fe oxyhydroxides and HS bound As followed with available As(V) reduction were key processes during flooding. This may be because the dispersion of soil particles and release of soil colloids activated the adsorbed As. Immobilization of available As(III) by amorphous Fe oxyhydroxides followed with adsorbed As(III) oxidation were key processes during drainage. This may be ascribe to the occurrence of coprecipitation and As(III) oxidation mediated by reactive oxygen species from Fe(II) oxidation. The results are beneficial for a deeper understanding of As species transformation at the interface of paddy soil-water as well as an estimation pathway for the impacts of key biogeochemical cycles on exogenous As species under a redox-alternating condition.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Humic Substances , Arsenic/chemistry , Soil/chemistry , Iron/chemistry , Soil Pollutants/analysis , Oxidation-Reduction , Oryza/metabolism
17.
J Hazard Mater ; 458: 131950, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37421863

ABSTRACT

The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.


Subject(s)
Microplastics , Soil , Plastics , Polyvinyl Chloride , Charcoal , Magnetic Phenomena , Polyethylenes
18.
Water Res ; 242: 120180, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37320876

ABSTRACT

The interfacial electron transfer (ET) between electron shuttling compounds and iron (Fe) oxyhydroxides plays a crucial role in the reductive dissolution of Fe minerals and the fate of surface-bound arsenic (As). However, the impact of exposed facets of highly crystalline hematite on reductive dissolution and As immobilization is poorly understood. In this study, we systematically investigated the interfacial processes of the electron shuttling compound cysteine (Cys) on various facets of hematite and the reallocations of surface-bound As(III) or As(V) on the respective surfaces. Our results demonstrate that the ET process between Cys and hematite generates Fe(II) and leads to reductive dissolution, with more Fe(II) generated on {001} facets of exposed hematite nanoplates (HNPs). Reductive dissolution of hematite leads to significantly enhanced As(V) reallocations on hematite. Nevertheless, upon the addition of Cys, a raipd release of As(III) can be halted by its prompt re-adsorption, leaving the extent of As(III) immobilization on hematite unchanged throughout the course of reductive dissolution. This is due to that Fe(II) can form new precipitates with As(V), a process that is facet-dependent and influenced by water chemistry. Electrochemical analysis reveals that HNPs exhibit higher conductivity and ET ability, which is beneficial for reductive dissolution and As reallocations on hematite. These findings highlight the facet-dependent reallocations of As(III) and As(V) facilitated by electron shuttling compounds and have implications for the biogeochemical processes of As in soil and subsurface environments.


Subject(s)
Arsenic , Arsenic/chemistry , Electrons , Ferric Compounds/chemistry , Ferrous Compounds , Oxidation-Reduction
19.
Environ Sci Technol ; 57(26): 9675-9682, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37354103

ABSTRACT

Microbially mediated inorganic-methylated arsenic (As) transformation in paddy soil is crucial to rice safety; however, the linkages between the microbial As methylation process and methylated As species remain elusive. Here, 62 paddy soils were collected from the Mekong River delta of Cambodia to profile As-related functional gene composition involved in the As cycle. The soil As concentration ranged from <1 to 16.6 mg kg-1, with average As contents of approximately 81% as methylated As and 54% as monomethylarsenate (MMAs(V)) in the phosphate- and oxalate-extractable fractions based on As sequential extraction analysis. Quantitative PCR revealed high arsenite-methylating gene (arsM) copy numbers, and metagenomics identified consistently high arsM gene abundance. The abundance of As-related genes was the highest in bacteria, followed by archaea and fungi. Pseudomonas, Bradyrhizobium, Burkholderia, and Anaeromyxobacter were identified as bacteria harboring the most genes related to As biotransformation. Moreover, arsM and arsI (As demethylation) gene-containing operons were identified in the metagenome-assembled genomes (MAGs), implying that arsM and arsI could be transcribed together. The prevalence of methylated As and arsM genes may have been overlooked in tropical paddy fields. The As methylation-demethylation cycle should be considered when manipulating the methylated As pool in paddy fields for rice safety.


Subject(s)
Arsenic , Arsenicals , Oryza , Soil Pollutants , Methylation , Soil , Prevalence , Arsenicals/metabolism , Bacteria/genetics , Bacteria/metabolism
20.
J Hazard Mater ; 458: 131900, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37385097

ABSTRACT

The current artificial intelligence (AI)-based prediction approaches of soil pollutants are inadequate in estimating the geospatial source-sink processes and striking a balance between the interpretability and accuracy, resulting in poor spatial extrapolation and generalization. In this study, we developed and tested a geographically interpretable four-dimensional AI prediction model for soil heavy metal (Cd) contents (4DGISHM) in Shaoguan city of China from 2016 to 2030. The 4DGISHM approach characterized spatio-temporal changes in source-sink processes of soil Cd by estimating spatio-temporal patterns and the effects of drivers and their interactions of soil Cd at local to regional scales using TreeExplainer-based SHAP and parallel ensemble AI algorithms. The results demonstrate that the prediction model achieved MSE and R2 values of 0.012 and 0.938, respectively, at a spatial resolution of 1 km. The predicted areas exceeding the risk control values for soil Cd across Shaoguan from 2022 to 2030 increased by 22.92% at the baseline scenario. By 2030, enterprise and transportation emissions (SHAP values 0.23 and 0.12 mg/kg, respectively) were the major drivers. The influence of driver interactions on soil Cd was marginal. Our approach surpasses the limitations of the AI "black box" by integrating spatio-temporal source-sink explanation and accuracy. This advancement enables geographically precise prediction and control of soil pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...