Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 330: 121834, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368111

ABSTRACT

Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.


Subject(s)
Atherosclerosis , Glycocalyx , Humans , Heparitin Sulfate/metabolism , Endothelial Cells/metabolism , Atherosclerosis/drug therapy , Heparin/pharmacology
2.
Data Brief ; 48: 109139, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37113498

ABSTRACT

The data shown in this article are related to the published paper entitled "A novel 4-O-endosulfatase with high potential for the structure-function studies of chondroitin sulfate/dermatan sulfate" in Carbohydrate Polymers. In this article, the phylogenetic analysis, cloning, expression, purification, specificity and biochemical characteristics of the identified chondroitin sulfate/dermatan sulfate 4-O-endosulfatase (endoBI4SF) are described in detail. The recombinant endoBI4SF with a molecular mass of 59.13 kDa can can specifically hydrolyze the 4-O- but not 2-O- and 6-O-sulfate groups in the oligo-/polysaccharides of chondroitin sulfate/dermatan sulfate and show the maximum reaction rate in 50 mM Tris-HCl buffer (pH 7.0) at 50°C, which can be a very useful tool for the structural and functional studies of chondroitin sulfate/dermatan sulfate.

3.
J Biol Chem ; 299(5): 104692, 2023 05.
Article in English | MEDLINE | ID: mdl-37031818

ABSTRACT

Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796 and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two ß-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.


Subject(s)
Chondroitin ABC Lyase , Chondroitin Sulfates , Animals , Mice , Bacteria/enzymology , Chondroitin ABC Lyase/chemistry , Chondroitin Sulfates/metabolism , Dermatan Sulfate/chemistry , Disaccharides/chemistry , Peptides , Substrate Specificity
4.
Carbohydr Polym ; 305: 120508, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36737182

ABSTRACT

The sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), which encode unique biological information, play critical roles in the various biological functions of CS/DS chains. CS/DS sulfatases, which can specifically hydrolyze sulfate groups, could potentially be essential tools for deciphering and changing the biological information encoded by these sulfation patterns. However, endosulfatase with high activity to efficiently hydrolyze the sulfate groups inside CS/DS polysaccharides have rarely been identified, which hinders the practical applications of CS/DS sulfatases. Herein, a novel CS/DS 4-O-endosulfatase (endoBI4SF) with a strong ability to completely remove 4-O-sulfated groups inside various CS/DS polysaccharides was identified and successfully used to investigate the biological roles of 4-O-sulfated CS/DS in vitro and in vivo. This study provides a much-needed tool to tailor the sulfation patterns and explore the related functions of 4-O-sulfated CS/DS chains in vitro and in vivo.


Subject(s)
Chondroitin Sulfates , Dermatan Sulfate , Polysaccharides , Sulfatases
5.
Methods Mol Biol ; 2619: 249-256, 2023.
Article in English | MEDLINE | ID: mdl-36662475

ABSTRACT

Heparin/heparan sulfate (HP/HS) is a class of acidic polysaccharides with many potential medical applications, especially HP, and its derivatives, low molecular weight heparins (LMWHs), have been widely used as anticoagulants to treat thrombosis for decades. However, the complex structure endows HP/HS a variety of biological functions and hinders the structural and functional studies of HP/HS. Heparinases derived from bacteria are useful tools for the structural studies of HP/HS as well as the preparation of LMWHs. The enzymatic method for the structural analysis of HP/HS chains is easy to operate, requires less samples, and is low cost. Here, we describe an enzymatic approach to investigate the primary sequences of the HP/HS oligosaccharides using a recently discovered exotype heparinase.


Subject(s)
Heparin , Heparitin Sulfate , Heparin/chemistry , Heparitin Sulfate/chemistry , Heparin Lyase , Anticoagulants , Oligosaccharides/chemistry
6.
J Adv Res ; 46: 1-15, 2023 04.
Article in English | MEDLINE | ID: mdl-35811061

ABSTRACT

INTRODUCTION: Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES: This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS: The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS: This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION: In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.


Subject(s)
Arabidopsis , Nucleosides , Plants , Arabidopsis/genetics , Signal Transduction , Deoxyguanosine
7.
Polymers (Basel) ; 14(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36501703

ABSTRACT

Chinese sturgeon was an endangered cartilaginous fish. The success of artificial breeding has promoted it to a food fish and it is now beginning to provide a new source of cartilage for the extraction of chondroitin sulfate (CS). However, the structural characteristics of sturgeon CS from different tissues remain to be determined in more detail. In this study, CSs from the head, backbone, and fin cartilage of Chinese sturgeon were individually purified and characterized for the first time. The molecular weights, disaccharide compositions, and oligosaccharide sulfation patterns of these CSs are significantly different. Fin CS (SFCS), rich in GlcUAα1-3GalNAc(4S), has the biggest molecular weight (26.5 kDa). In contrast, head CS (SHCS) has a molecular weight of 21.0 kDa and is rich in GlcUAα1-3GalNAc(6S). Most features of backbone CS (SBCS) are between the former two. Other glycosaminoglycan impurities in these three sturgeon-derived CSs were lower than those in other common commercial CSs. All three CSs have no effect on the activity of thrombin or Factor Xa in the presence of antithrombin III. Hence, Chinese sturgeon cartilage is a potential source for the preparation of CSs with different features for food and pharmaceutical applications.

8.
J Biol Chem ; 298(12): 102609, 2022 12.
Article in English | MEDLINE | ID: mdl-36265583

ABSTRACT

The high heterogeneity and mutation rate of cancer cells often lead to the failure of targeted therapy, and therefore, new targets for multitarget therapy of tumors are urgently needed. Aberrantly expressed glycosaminoglycans (GAGs) have been shown to be involved in tumorigenesis and are promising new targets. Recently, the GAG-binding domain rVAR2 of the Plasmodium falciparum VAR2CSA protein was identified as a probe targeting cancer-associated chondroitin sulfate A-like epitopes. In this study, we found that rVAR2 could also bind to heparin (Hep) and chondroitin sulfate E. Therefore, we used rVAR2 as a model to establish a method based on random mutagenesis of the GAG-binding protein and phage display to identify and optimize probes targeting tumor GAGs. We identified a new probe, VAR2HP, which selectively recognized Hep by interacting with unique epitopes consisting of a decasaccharide structure that contains at least three HexA2S(1-4)GlcNS6S disaccharides. Moreover, we found that these Hep-like epitopes were overexpressed in various cancer cells. Most importantly, our in vivo experiments showed that VAR2HP had good biocompatibility and preferentially localizes to tumors, which indicates that VAR2HP has great application potential in tumor diagnosis and targeted therapy. In conclusion, this study provides a strategy for the discovery of novel tumor-associated GAG epitopes and their specific probes.


Subject(s)
Heparin , Neoplasms , Humans , Heparin/metabolism , Epitopes/chemistry , Glycosaminoglycans/metabolism , Chondroitin Sulfates/genetics , Chondroitin Sulfates/metabolism , Neoplasms/genetics
10.
Nat Commun ; 13(1): 566, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091565

ABSTRACT

The collagenases of Vibrio species, many of which are pathogens, have been regarded as an important virulence factor. However, there is little information on the structure and collagenolytic mechanism of Vibrio collagenase. Here, we report the crystal structure of the collagenase module (CM) of Vibrio collagenase VhaC and the conformation of VhaC in solution. Structural and biochemical analyses and molecular dynamics studies reveal that triple-helical collagen is initially recognized by the activator domain, followed by subsequent cleavage by the peptidase domain along with the closing movement of CM. This is different from the peptidolytic mode or the proposed collagenolysis of Clostridium collagenase. We propose a model for the integrated collagenolytic mechanism of VhaC, integrating the functions of VhaC accessory domains and its collagen degradation pattern. This study provides insight into the mechanism of bacterial collagenolysis and helps in structure-based drug design targeting of the Vibrio collagenase.


Subject(s)
Bacterial Proteins/chemistry , Collagen/metabolism , Collagenases/chemistry , Protein Conformation , Vibrio/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/genetics , Biocatalysis , Chromatography, Liquid , Collagenases/genetics , Collagenases/metabolism , Crystallography, X-Ray , Mass Spectrometry , Microscopy, Atomic Force , Molecular Dynamics Simulation , Peptides/genetics , Peptides/metabolism , Protein Binding , Vibrio/enzymology , Vibrio/genetics
11.
Mar Drugs ; 19(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34940705

ABSTRACT

Recent explorations of tool-like alginate lyases have been focused on their oligosaccharide-yielding properties and corresponding mechanisms, whereas most were reported as endo-type with α-L-guluronate (G) preference. Less is known about the ß-D-mannuronate (M) preference, whose commercial production and enzyme application is limited. In this study, we elucidated Aly6 of Flammeovirga sp. strain MY04 as a novel M-preferred exolytic bifunctional lyase and compared it with AlgLs of Pseudomonas aeruginosa (Pae-AlgL) and Azotobacter vinelandii (Avi-AlgL), two typical M-specific endolytic lyases. This study demonstrated that the AlgL and heparinase_II_III modules play indispensable roles in determining the characteristics of the recombinant exo-type enzyme rAly6, which is preferred to degrade M-enriched substrates by continuously cleaving various monosaccharide units from the nonreducing end, thus yielding various size-defined ΔG-terminated oligosaccharides as intermediate products. By contrast, the endolytic enzymes Pae-rAlgL and Avi-rAlgL varied their action modes specifically against M-enriched substrates and finally degraded associated substrate chains into various size-defined oligosaccharides with a succession rule, changing from ΔM to ΔG-terminus when the product size increased. Furthermore, site-directed mutations and further protein structure tests indicated that H195NHSTW is an active, half-conserved, and essential enzyme motif. This study provided new insights into M-preferring lyases for novel resource discoveries, oligosaccharide preparations, and sequence determinations.


Subject(s)
Bacteroidetes , Polysaccharide-Lyases/chemistry , Pseudomonas aeruginosa/enzymology , Animals , Aquatic Organisms , Substrate Specificity
12.
Front Bioeng Biotechnol ; 9: 671879, 2021.
Article in English | MEDLINE | ID: mdl-34055763

ABSTRACT

Compared with endophytes, metabolites from endophytes (MEs) have great potential in agriculture. However, a technique for industrializing the production of MEs is still scarce. Moreover, the establishment of effective methods for evaluating the quality of MEs is hampered by the fact that some compounds with beneficial effects on crops have not been clearly identified. Herein, a system was established for the production, quality control and application of MEs by using the extract from Paecilomyces variotii SJ1 (ZNC). First, the extraction conditions of ZNC were optimized through response surface methodology, after which each batch (500 L) met the consumption requirements of crops in 7,467 hectares. Then, chromatographic fingerprinting and enzyme-linked immunosorbent assay were applied to evaluate the similarity and specificity of unknown effective components in ZNC, ensuring a similarity of more than 90% and a quantitative accuracy of greater than 99.9% for the products from different batches. Finally, the bioactivity of industrially produced ZNC was evaluated in the field, and it significantly increased the potato yields by 4.4-10.8%. Overall, we have established a practical technical system for the large-scale application of ZNC in agriculture.

13.
Elife ; 102021 05 10.
Article in English | MEDLINE | ID: mdl-33970104

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule in marine environments with important roles in global sulfur and nutrient cycling. Diverse DMSP lyases in some algae, bacteria, and fungi cleave DMSP to yield gaseous dimethyl sulfide (DMS), an infochemical with important roles in atmospheric chemistry. Here, we identified a novel ATP-dependent DMSP lyase, DddX. DddX belongs to the acyl-CoA synthetase superfamily and is distinct from the eight other known DMSP lyases. DddX catalyses the conversion of DMSP to DMS via a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. DddX is found in several Alphaproteobacteria, Gammaproteobacteria, and Firmicutes, suggesting that this new DMSP lyase may play an overlooked role in DMSP/DMS cycles.


The global sulfur cycle is a collection of geological and biological processes that circulate sulfur-containing compounds through the oceans, rocks and atmosphere. Sulfur itself is essential for life and important for plant growth, hence its widespread use in fertilizers. Marine organisms such as bacteria, algae and phytoplankton produce one particular sulfur compound, called dimethylsulfoniopropionate, or DMSP, in massive amounts. DMSP made in the oceans gets readily converted into a gas called dimethyl sulfide (DMS), which is the largest natural source of sulfur entering the atmosphere. In the air, DMS is converted to sulfate and other by-products that can act as cloud condensation nuclei, which, as the name suggests, are involved in cloud formation. In this way, DMS can influence weather and climate, so it is often referred to as 'climate-active' gas. At least eight enzymes are known to cleave DMSP into DMS gas with a few by-products. These enzymes are found in algae, bacteria and fungi, and are referred to as lyases, for the way they breakdown their target compounds (DMSP, in this case). Recently, researchers have identified some bacteria that produce DMS from DMSP without using known DMSP lyases. This suggests there are other, unidentified enzymes that act on DMSP in nature, and likely contribute to global sulfur cycling. Li, Wang et al. set out to uncover new enzymes responsible for converting the DMSP that marine bacteria produce into gaseous DMS. One new enzyme called DddX was identified and found to belong to a superfamily of enzymes quite separate to other known DMSP lyases. Li, Wang et al. also showed how DddX drives the conversion of DMSP to DMS in a two-step reaction, and that the enzyme is found across several classes of bacteria. Further experiments to characterise the protein structure of DddX also revealed the molecular mechanism for its catalytic action. This study offers important insights into how marine bacteria generate the climatically important gas DMS from DMSP, leading to a better understanding of the global sulfur cycle. It gives microbial ecologists a more comprehensive perspective of these environmental processes, and provides biochemists with data on a family of enzymes not previously known to act on sulfur-containing compounds.


Subject(s)
Carbon-Sulfur Lyases/chemistry , Psychrobacter/enzymology , Sulfonium Compounds/metabolism , Acyl Coenzyme A/metabolism , Adenosine Triphosphate , Bacteria/growth & development , Bacteria/isolation & purification , Bacterial Proteins/chemistry , Carbon-Sulfur Lyases/genetics , Psychrobacter/genetics , Psychrobacter/growth & development , Sulfides/metabolism
14.
Carbohydr Polym ; 262: 117971, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33838835

ABSTRACT

Chondroitin sulfate (CS) chains containing GlcUAß1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cartilage/chemistry , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Decapodiformes/chemistry , Animals , Carrier Proteins/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid/methods , Cytokines/metabolism , Disaccharides/chemistry , Epidermal Growth Factor/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Heparin-binding EGF-like Growth Factor/metabolism , Hepatocyte Growth Factor/metabolism , Mice , Neoplasm Metastasis
15.
Nat Commun ; 12(1): 1263, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627653

ABSTRACT

Heparinases (Hepases) are critical tools for the studies of highly heterogeneous heparin (HP)/heparan sulfate (HS). However, exolytic heparinases urgently needed for the sequencing of HP/HS chains remain undiscovered. Herein, a type of exolytic heparinases (exoHepases) is identified from the genomes of different bacteria. These exoHepases share almost no homology with known Hepases and prefer to digest HP rather than HS chains by sequentially releasing unsaturated disaccharides from their reducing ends. The structural study of an exoHepase (BIexoHep) shows that an N-terminal conserved DUF4962 superfamily domain is essential to the enzyme activities of these exoHepases, which is involved in the formation of a unique L-shaped catalytic cavity controlling the sequential digestion of substrates through electrostatic interactions. Further, several HP octasaccharides have been preliminarily sequenced by using BIexoHep. Overall, this study fills the research gap of exoHepases and provides urgently needed tools for the structural and functional studies of HP/HS chains.


Subject(s)
Heparin Lyase/metabolism , Catalysis , Heparin/metabolism , Static Electricity
16.
mBio ; 12(1)2021 01 26.
Article in English | MEDLINE | ID: mdl-33500342

ABSTRACT

As typical bacterial replicons, circular chromosomes replicate bidirectionally and circular plasmids replicate either bidirectionally or unidirectionally. Whereas the finding of chromids (plasmid-derived chromosomes) in multiple bacterial lineages provides circumstantial evidence that chromosomes likely evolved from plasmids, all experimentally assayed chromids were shown to use bidirectional replication. Here, we employed a model system, the marine bacterial genus Pseudoalteromonas, members of which consistently carry a chromosome and a chromid. We provide experimental and bioinformatic evidence that while chromids in a few strains replicate bidirectionally, most replicate unidirectionally. This is the first experimental demonstration of the unidirectional replication mode in bacterial chromids. Phylogenomic and comparative genomic analyses showed that the bidirectional replication evolved only once from a unidirectional ancestor and that this transition was associated with insertions of exogenous DNA and relocation of the replication terminus region (ter2) from near the origin site (ori2) to a position roughly opposite it. This process enables a plasmid-derived chromosome to increase its size and expand the bacterium's metabolic versatility while keeping its replication synchronized with that of the main chromosome. A major implication of our study is that the uni- and bidirectionally replicating chromids may represent two stages on the evolutionary trajectory from unidirectionally replicating plasmids to bidirectionally replicating chromosomes in bacteria. Further bioinformatic analyses predicted unidirectionally replicating chromids in several unrelated bacterial phyla, suggesting that evolution from unidirectionally to bidirectionally replicating replicons occurred multiple times in bacteria.IMPORTANCE Chromosome replication is an essential process for cell division. The mode of chromosome replication has important impacts on the structure of the chromosome and replication speed. Bidirectional replication is the rule for bacterial chromosomes, and unidirectional replication has been found only in plasmids. To date, no bacterial chromosomes have been experimentally demonstrated to replicate unidirectionally. Here, we showed that the chromids (plasmid-derived chromosomes) in Pseudoalteromonas replicate either uni- or bidirectionally and that a single evolutionary transition from uni- to bidirectionality explains this diversity. These uni- and bidirectionally replicating chromids likely represent two stages during the evolution from a small and unidirectionally replicating plasmid to a large and bidirectionally replicating chromosome. This study provides insights into both the physiology of chromosome replication and the early evolutionary history of bacterial chromosomes.


Subject(s)
Chromosomes, Bacterial/genetics , DNA Replication/genetics , Evolution, Molecular , Pseudoalteromonas/genetics , Replicon/genetics , DNA Replication/physiology , DNA, Bacterial/genetics , Genome, Bacterial , Phylogeny , Plasmids/genetics , Replication Origin
17.
Front Microbiol ; 12: 775124, 2021.
Article in English | MEDLINE | ID: mdl-35140691

ABSTRACT

Chondroitin sulfate (CS)/dermatan sulfate (DS) is a kind of sulfated polyanionic, linear polysaccharide belonging to glycosaminoglycan. CS/DS sulfatases, which specifically hydrolyze sulfate groups from CS/DS oligo-/polysaccharides, are potential tools for structural and functional studies of CD/DS. However, only a few sulfatases have been reported and characterized in detail to date. In this study, two CS/DS sulfatases, PB_3262 and PB_3285, were identified from the marine bacterium Photobacterium sp. QA16 and their action patterns were studied in detail. PB_3262 was characterized as a novel 4-O-endosulfatase that can effectively and specifically hydrolyze the 4-O-sulfate group of disaccharide GlcUAß1-3GalNAc(4-O-sulfate) but not GlcUAß1-3GalNAc(4,6-O-sulfate) and IdoUAα1-3GalNAc(4-O-sulfate) in CS/DS oligo-/polysaccharides, which is very different from the identified 4-O-endosulfatases in the substrate profile. In contrast, PB_3285 specifically hydrolyzes the 6-O-sulfate groups of GalNAc(6-O-sulfate) residues located at the reducing ends of the CS chains and is the first recombinantly expressed 6-O-exosulfatase to effectively act on CS oligosaccharides.

18.
Biochem J ; 478(2): 281-298, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33351063

ABSTRACT

Recently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et. al (2015) J. Biol. Chem.290, 7823-7832; Wang, S., et. al (2019) Front. Microbiol.10, 1309). In the study herein, we provide new insight about the structural characteristics of the substrate which determine the activity of this enzyme. The substrate specificities of the 4-O-endosulfatase were probed by using libraries of structure-defined CS/DS oligosaccharides issued from synthetic and enzymatic sources. We found that this 4-O-endosulfatase effectively remove the 4-O-sulfate of disaccharide sequences GlcUAß1-3GalNAc(4S) or GlcUAß1-3GalNAc(4S,6S) in all tested hexasaccharides. The sulfated GalNac residue is resistant to the enzyme when adjacent uronic residues are sulfated as shown by the lack of enzymatic desulfation of GlcUAß1-3GalNAc(4S) connected to a disaccharide GlcUA(2S)ß1-3GalNAc(6S) in an octasaccharide. The 3-O-sulfation of GlcUA was also shown to hinder the action of this enzyme. The 4-O-endosulfatase exhibited an oriented action from the reducing to the non-reducing whatever the saturation or not of the non-reducing end. Finally, the activity of the 4-O-endosulfatase decreases with the increase in substrate size. With the deeper understanding of this novel 4-O-endosulfatase, such chondroitin sulfate (CS)/dermatan sulfate (DS) sulfatase is a useful tool for exploring the structure-function relationship of CS/DS.


Subject(s)
Sulfatases/chemistry , Sulfatases/metabolism , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Disaccharides/analysis , Disaccharides/chemistry , Mass Spectrometry , Substrate Specificity
19.
J Biol Chem ; 296: 100081, 2021.
Article in English | MEDLINE | ID: mdl-33199371

ABSTRACT

Monomethylamine (MMA) is an important climate-active oceanic trace gas and ubiquitous in the oceans. γ-Glutamylmethylamide synthetase (GmaS) catalyzes the conversion of MMA to γ-glutamylmethylamide, the first step in MMA metabolism in many marine bacteria. The gmaS gene occurs in ∼23% of microbial genomes in the surface ocean and is a validated biomarker to detect MMA-utilizing bacteria. However, the catalytic mechanism of GmaS has not been studied because of the lack of structural information. Here, the GmaS from Rhodovulum sp. 12E13 (RhGmaS) was characterized, and the crystal structures of apo-RhGmaS and RhGmaS with different ligands in five states were solved. Based on structural and biochemical analyses, the catalytic mechanism of RhGmaS was explained. ATP is first bound in RhGmaS, leading to a conformational change of a flexible loop (Lys287-Ile305), which is essential for the subsequent binding of glutamate. During the catalysis of RhGmaS, the residue Arg312 participates in polarizing the γ-phosphate of ATP and in stabilizing the γ-glutamyl phosphate intermediate; Asp177 is responsible for the deprotonation of MMA, assisting the attack of MMA on γ-glutamyl phosphate to produce a tetrahedral intermediate; and Glu186 acts as a catalytic base to abstract a proton from the tetrahedral intermediate to finally generate glutamylmethylamide. Sequence analysis suggested that the catalytic mechanism of RhGmaS proposed in this study has universal significance in bacteria containing GmaS. Our results provide novel insights into MMA metabolism, contributing to a better understanding of MMA catabolism in global carbon and nitrogen cycles.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Glutamates/metabolism , Adenosine Triphosphate/metabolism , Catalysis , Escherichia coli/metabolism , Glutamic Acid/metabolism , Magnesium/metabolism , Methylamines/metabolism , Microscopy, Electron , Rhodovulum/metabolism
20.
Int J Biol Macromol ; 165(Pt B): 2314-2325, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33132124

ABSTRACT

Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.


Subject(s)
Chondroitin Lyases/metabolism , Chondroitin Sulfates/chemistry , Dermatan Sulfate/analogs & derivatives , Photobacterium/enzymology , Biocatalysis , Chondroitin Lyases/chemistry , Chondroitin Lyases/genetics , Dermatan Sulfate/chemistry , Mutation/genetics , Phylogeny , Recombinant Proteins/metabolism , Substrate Specificity , Sulfates , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...