Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793348

ABSTRACT

Harmful substances in consumer goods pose serious hazards to human health and the environment. However, due to the vast variety of consumer goods and the complexity of their substrates, it is difficult to simultaneously detect multiple harmful substances in different materials. This paper presents a method for the simultaneous determination of 41 harmful substances comprising 17 phthalates (PAEs), 8 organophosphate flame retardants (OPFRs), and 16 polycyclic aromatic hydrocarbons (PAHs) in five types of products using the matrix-matching calibration strategy. The method employs an efficient ultrasonic extraction procedure using a mixture of dichloromethane and methylbenzene, followed by dissolution-precipitation and analysis through gas chromatography-mass spectrometry. Compared with previous experiments, we established a universal pretreatment method suitable for multi-matrix materials to simultaneously determine multiple harmful substances. To evaluate the effects of the matrix on the experimental results, we compared neat standard solutions and matrix-matching standard solutions. The results demonstrated that all compounds were successfully separated within 30 min with excellent separation efficiency. Additionally, the linear relationships of all analytes showed strong correlation coefficients (R2) of at least 0.995, ranging from 0.02 mg/L to 20 mg/L. The average recoveries of the target compounds (spiked at three concentration levels) were between 73.6 and 124.1%, with a relative standard deviation (n = 6) varying from 1.2% to 9.9%. Finally, we tested 40 different materials from consumer products and detected 16 harmful substances in 31 samples. Overall, this method is simple and accurate, and it can be used to simultaneously determine multiple types of hazardous substances in multi-matrix materials by minimizing matrix effects, making it an invaluable tool for ensuring product safety and protecting public health.

2.
J Chromatogr A ; 1721: 464855, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38569298

ABSTRACT

Inhalable chemicals found in children's play mats can be slowly released into indoor environments and consequently threaten human health. In this study, the partition coefficients of seven inhalable chemicals between play mats and air were calculated by headspace gas chromatography-mass spectrometry based on the law of conservation of mass and the principle of equilibrium of headspace bottles. Furthermore, an emission source model for the residual ratio of the inhalable chemicals in play mats was established. Most substances found in play mats have large partition coefficients owing to the complex void structure of the mats, which adsorbs a large number of organic pollutants. The partition coefficient is not only related to the boiling point and environmental temperature, but also the specific material and the adsorption of the organic pollutant onto the material. The emission source model for children's play mats developed in this study can characterize the decay of the inhalable chemicals over time. The data showed that after eight days of placing the play mat in a ventilated environment, the residual ratio of seven inhalable chemicals did not exceed 15 %.


Subject(s)
Environmental Pollutants , Child , Humans , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...