Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Clin Invest ; 134(5)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227370

ABSTRACT

Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.


Subject(s)
Apolipoprotein L1 , Kidney Diseases , Organothiophosphorus Compounds , Mice , Animals , Humans , Apolipoprotein L1/genetics , HEK293 Cells , Genetic Variation , Kidney Diseases/genetics , Mice, Transgenic
2.
J Fungi (Basel) ; 9(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37888215

ABSTRACT

Grifola frondosa is a valuable edible fungus with high nutritional and medicinal values. The mating systems of fungi not only offer practical strategies for breeding, but also have far-reaching effects on genetic variability. Grifola frondosa has been considered as a sexual species with a tetrapolar mating system based on little experimental data. In the present study, one group of test crosses and six groups of three-round mating experiments from two parental strains were conducted to determine the mating system in G. frondosa. A chi-squared test of the results of the test-cross mating experiments indicated that they satisfied Mendelian segregation, while a series of three-round mating experiments showed that Mendelian segregation was not satisfied, implying a segregation distortion phenomenon in G. frondosa. A genomic map of the G. frondosa strain, y59, grown from an LMCZ basidiospore, with 40.54 Mb and 12 chromosomes, was generated using genome, transcriptome and Hi-C sequencing technology. Based on the genomic annotation of G. frondosa, the mating-type loci A and B were located on chromosomes 1 and 11, respectively. The mating-type locus A coded for the ß-fg protein, HD1, HD2 and MIP, in that order. The mating-type locus B consisted of six pheromone receptors (PRs) and five pheromone precursors (PPs) in a crossed order. Moreover, both HD and PR loci may have only one sublocus that determines the mating type in G. frondosa. The nonsynonymous SNP and indel mutations between the A1B1 and A2B2 mating-type strains and the reference genome of y59 only occurred on genes HD2 and PR1/2, preliminarily confirming that the mating type of the y59 strain was A1B2 and not A1B1. Based on the genetic evidence and the more reliable molecular evidence, the results reveal that the mating system of G. frondosa is tetrapolar. This study has important implications for the genetics and hybrid breeding of G. frondosa.

3.
Viruses ; 15(8)2023 07 31.
Article in English | MEDLINE | ID: mdl-37632009

ABSTRACT

Novel coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and continues to threaten humanity due to the persistent emergence of new variants. Therefore, developing more effective and broad-spectrum therapeutic and prophylactic drugs against infection by SARS-CoV-2 and its variants, as well as future emerging CoVs, is urgently needed. In this study, we screened several US FDA-approved drugs and identified phenothiazine derivatives with the ability to potently inhibit the infection of pseudotyped SARS-CoV-2 and distinct variants of concern (VOCs), including B.1.617.2 (Delta) and currently circulating Omicron sublineages XBB and BQ.1.1, as well as pseudotyped SARS-CoV and MERS-CoV. Mechanistic studies suggested that phenothiazines predominantly inhibited SARS-CoV-2 pseudovirus (PsV) infection at the early stage and potentially bound to the spike (S) protein of SARS-CoV-2, which may prevent the proteolytic cleavage of the S protein, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that phenothiazines can serve as a potential broad-spectrum therapeutic drug for the treatment of SARS-CoV-2 infection as well as the infection of future emerging human coronaviruses (HCoVs).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phenothiazines/pharmacology , Spike Glycoprotein, Coronavirus
4.
Front Cell Infect Microbiol ; 13: 1170505, 2023.
Article in English | MEDLINE | ID: mdl-37153150

ABSTRACT

Background: Low temperature is conducive to the survival of COVID-19. Some studies suggest that cold-chain environment may prolong the survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increase the risk of transmission. However, the effect of cold-chain environmental factors and packaging materials on SARS-CoV-2 stability remains unclear. Methods: This study aimed to reveal cold-chain environmental factors that preserve the stability of SARS-CoV-2 and further explore effective disinfection measures for SARS-CoV-2 in the cold-chain environment. The decay rate of SARS-CoV-2 pseudovirus in the cold-chain environment, on various types of packaging material surfaces, i.e., polyethylene plastic, stainless steel, Teflon and cardboard, and in frozen seawater was investigated. The influence of visible light (wavelength 450 nm-780 nm) and airflow on the stability of SARS-CoV-2 pseudovirus at -18°C was subsequently assessed. Results: Experimental data show that SARS-CoV-2 pseudovirus decayed more rapidly on porous cardboard surfaces than on nonporous surfaces, including polyethylene (PE) plastic, stainless steel, and Teflon. Compared with that at 25°C, the decay rate of SARS-CoV-2 pseudovirus was significantly lower at low temperatures. Seawater preserved viral stability both at -18°C and with repeated freeze-thaw cycles compared with that in deionized water. Visible light from light-emitting diode (LED) illumination and airflow at -18°C reduced SARS-CoV-2 pseudovirus stability. Conclusion: Our studies indicate that temperature and seawater in the cold chain are risk factors for SARS-CoV-2 transmission, and LED visible light irradiation and increased airflow may be used as disinfection measures for SARS-CoV-2 in the cold-chain environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Refrigeration , Disinfection , Stainless Steel , Plastics , Polytetrafluoroethylene , Polyethylenes
5.
Viruses ; 15(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37112965

ABSTRACT

Retroviruses, especially the pathogenic human immunodeficiency virus type 1 (HIV-1), have severely threatened human health for decades. Retroviruses can form stable latent reservoirs via retroviral DNA integration into the host genome, and then be temporarily transcriptional silencing in infected cells, which makes retroviral infection incurable. Although many cellular restriction factors interfere with various steps of the life cycle of retroviruses and the formation of viral latency, viruses can utilize viral proteins or hijack cellular factors to evade intracellular immunity. Many post-translational modifications play key roles in the cross-talking between the cellular and viral proteins, which has greatly determined the fate of retroviral infection. Here, we reviewed recent advances in the regulation of ubiquitination and SUMOylation in the infection and latency of retroviruses, focusing on both host defense- and virus counterattack-related ubiquitination and SUMOylation system. We also summarized the development of ubiquitination- and SUMOylation-targeted anti-retroviral drugs and discussed their therapeutic potential. Manipulating ubiquitination or SUMOylation pathways by targeted drugs could be a promising strategy to achieve a "sterilizing cure" or "functional cure" of retroviral infection.


Subject(s)
Retroviridae Infections , Sumoylation , Humans , Ubiquitination , Viral Proteins/metabolism , Retroviridae/genetics , Retroviridae/metabolism
6.
Molecules ; 28(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36985544

ABSTRACT

Two transition metal complexes were synthesized with Ni(II) and Cu(II) using a tetradentate Schiff-base ligand, (R,R) and (S,S)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine. The stereochemical properties of the ligand and the metal complexes were investigated using a combined experimental and theoretical approach. Multiple spectroscopic techniques, which include IR, vibrational circular dichroism (VCD), UV-Vis and electronic circular dichroism (ECD), as well as Raman and the newly discovered ECD-circularly polarized Raman (i.e., eCP-Raman) spectroscopies were utilized. The good agreement achieved between the experimental and simulated IR, VCD, UV-Vis and ECD spectra of the ligand allowed one to identify the presence of three main ligand conformers in solution, thanks, especially to the high VCD sensitivity to the conformations associated with the tertbutyl groups. The helicity of the metal complexes was identified to be M and P for those with the (R,R) and (S,S) ligands, respectively. Furthermore, eCP-Raman measurements were carried out for the two metal complexes under (near) resonance. Their induced solvent chiral Raman features were explained, and the potential application of eCP-Raman was discussed.

7.
Math Biosci Eng ; 20(2): 1960-1980, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36899517

ABSTRACT

There are huge differences in the layouts and numbers of sensors in different smart home environments. Daily activities performed by residents trigger a variety of sensor event streams. Solving the problem of sensor mapping is an important prerequisite for the transfer of activity features in smart homes. However, it is common practice among most of the existing approaches that only sensor profile information or the ontological relationship between sensor location and furniture attachment are used for sensor mapping. The rough mapping seriously restricts the performance of daily activity recognition. This paper presents a mapping approach based on the optimal search for sensors. To begin with, a source smart home that is similar to the target one is selected. Thereafter, sensors in both source and target smart homes are grouped by sensor profile information. In addition, sensor mapping space is built. Furthermore, a small amount of data collected from the target smart home is used to evaluate each instance in sensor mapping space. In conclusion, Deep Adversarial Transfer Network is employed to perform daily activity recognition among heterogeneous smart homes. Testing is conducted using the public CASAC data set. The results have revealed that the proposed approach achieves a 7-10% improvement in accuracy, 5-11% improvement in precision, and 6-11% improvement in F1 score, compared with the existing methods.

8.
Hum Brain Mapp ; 44(6): 2451-2464, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36749642

ABSTRACT

In an ultimatum game, the responder must decide between pursuing self-interest and insisting on fairness, and these choices are affected by the intentions of the proposer. However, the time course of this social decision-making process is unclear. Representational similarity analysis (RSA) is a useful technique for linking brain activity with rich behavioral data sets. In this study, electroencephalography (EEG) was used to measure the time course of neural responses to proposed allocation schemes with different intentions. Twenty-eight participants played an ultimatum game as responders. They had to choose between accepting and rejecting the fair or unfair money allocation schemes of proposers. The schemes were offered based on the proposer's selfish intention (monetary gain), altruistic intention (donation to charity), or ambiguous intention (unknown to the responder). We used a spatiotemporal RSA and inter-subject RSA (IS-RSA) to explore the connections between event-related potentials (ERPs) after offer presentation and intention presentation with four types of behavioral data (acceptance, response time, fairness ratings, and pleasantness ratings). The spatiotemporal RSA results revealed that only response time variation was linked with the difference in ERPs at 432-592 ms after offer presentation on the posterior parietal and prefrontal regions. Meanwhile, the IS-RSA results found a significant association between inter-individual differences in response time and differences in ERP activity at 596-812 ms after the presentation of ambiguous intention, particularly in the prefrontal region. This study expands the intention-based reciprocal model to the third-party context and demonstrates that brain activity can represent response time differences in social decision-making.


Subject(s)
Decision Making , Intention , Humans , Decision Making/physiology , Games, Experimental , Evoked Potentials/physiology , Electroencephalography , Social Behavior
9.
J Fungi (Basel) ; 9(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36836313

ABSTRACT

Four new species of Russula subsection Sardoninae from northern and southwestern China under coniferous and deciduous trees are proposed as R. begonia, R. photinia, R. rhodochroa, and R. rufa. Illustrations and descriptions of R. gracillima, R. leucomarginata, R. roseola, and the above four new species are provided based on evidence of morphological characters and phylogenetic analyses of the internal transcribed spacer (ITS), as well as the multi-locus of mtSSU, nLSU, rpb1, rpb2 and tef1-α. The relationships between these new species and allied taxa are discussed.

10.
Blood Cells Mol Dis ; 98: 102707, 2023 01.
Article in English | MEDLINE | ID: mdl-36334504

ABSTRACT

High-altitude polycythemia (HAPC) is a chronic mountain sickness characterized by multiple severe ill-effects. Its pathogenesis is still unclear, and till date, no study has been conducted to investigate the plasma exome profile of Tibetan patients with HAPC. In this study, we aimed to elucidate the pathogenesis of HAPC by determining the microRNA (miRNA) signatures. We compared the plasma exosome miRNA expression profiles of eight patients with HAPC and eight healthy controls using next-generation miRNA sequencing. Further, we extracted and identified plasma exosomes using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. We used quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to validate differentially expressed plasma exosomal miRNAs. Finally, we analyzed the diagnostic values of the differentially expressed miRNAs for HAPC using receiver operating characteristic (ROC) curves. We detected 2007 miRNAs from confirmed plasma exosomes, including 1342 known miRNAs and 665 newly predicted miRNAs. We verified the expression of the top 10 differentially expressed miRNAs via qRT-PCR. Patients with HAPC showed significantly upregulated hsa-miR-122-5p, hsa-miR-423-5p, hsa-miR-4433b-3p, hsa-miR-1291, and hsa-miR-106b-5p expression levels, while hsa-miR-200c-3p expression was downregulated. This study may provide background knowledge for future studies on HAPC studies, which may further facilitate the development of novel therapies against this common disease.


Subject(s)
Altitude Sickness , Exosomes , MicroRNAs , Polycythemia , Humans , Altitude Sickness/genetics , Polycythemia/etiology , Polycythemia/genetics , Altitude , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/genetics , Exosomes/metabolism
11.
Int J Numer Method Biomed Eng ; 39(11): e3647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36166288

ABSTRACT

Prediction of blood cell flow is known as the difficult research by reason of the complexity of blood vessel. In this study, considering the complex structure of blood vessels, a mechanical model for red blood cell (RBC) based on unstructured grid has been established to study the flow characteristics of RBCs in complex blood vessels. In the model, the strain-energy function by Skalak is employed to model the shear elasticity and surface-area conservation of the membrane, and the hinge spring is used to describe the forces originating from local bending of the membrane. The immersed boundary method is utilized to couple the interphase force. Using the model, the stretching test of RBC is compared with the experiment data, and the good agreement verified the validation of the present model. The morphology of red blood cell and the blood viscosity in micro-vessel are studied. RBCs move with a symmetric shape (parachute shape) in small blood vessels, and the buckling instability is observed when the RBC flow slowly through a micro-vessel or a converging-diverging capillary. When the vessel diameter is around 10 µm, the reverse Fahraeus-Lindqvist effect is presented. The blood apparent viscosity shows linear increase with the blood hematocrit. In addition, Malaria infection can make the RBC deformability decreased and the blood apparent viscosity increased.


Subject(s)
Erythrocyte Deformability , Erythrocytes , Hematocrit , Hemodynamics , Capillaries
12.
J Fungi (Basel) ; 8(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36547616

ABSTRACT

Species of the genus Russula are key components of ectomycorrhizal ecosystems worldwide, some of which are famous edible fungi. Although many new species have been described in China, their diversity in North China is still poorly known. Based on the morphology observation of specimens and molecular phylogenetic analyses, combined with the current classification frame of Russula, six new species of Russula subgenus Russula are proposed from the Yanshan Mountains in northern Beijing and northern Hebei Province of China in this study: viz. Russula miyunensis (subsection Chamaeleontinae), R. plana (subsection Chamaeleontinae), R. sinoparva (subsection Puellarinae), R. sinorobusta (subsection Puellarinae), R. subversatilis (subsection Roseinae), and R. yanshanensis (subsection Puellarinae). This is the first report of the species of Russula subgenus Russula from the Yanshan Mountains. This study enriches the species diversity of Russula in North China and provides new data support for the systematic study of Russula in subsequent research, including research and development on edibility.

13.
Cell Rep ; 41(5): 111576, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36323253

ABSTRACT

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited. Here, by Cut&Run, we find that core NUPs display broad but also cell-type-specific association with active promoters and enhancers in human cells. Auxin-mediated rapid depletion of two NUPs demonstrates that NUP93, but not NUP35, directly and specifically controls gene transcription. NUP93 directly activates genes with high levels of RNA polymerase II loading and transcriptional elongation by facilitating full BRD4 recruitment to their active enhancers. dCas9-based tethering confirms a direct and causal role of NUP93 in gene transcriptional activation. Unexpectedly, in situ Hi-C and H3K27ac or H3K4me1 HiChIP results upon acute NUP93 depletion show negligible changesS2211-1247(22)01437-1 of 3D genome organization ranging from A/B compartments and topologically associating domains (TADs) to enhancer-promoter contacts.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Proteins , Humans , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Nuclear Pore , Genome , Chromatin , Cell Cycle Proteins/genetics
14.
IMA Fungus ; 13(1): 15, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064458

ABSTRACT

Large numbers of marine glaciers in the Qinghai-Tibet Plateau are especially sensitive to changes of climate and surface conditions. They have suffered fast accumulation and melting and retreated quickly in recent years. In 2017, we surveyed the cold-adapted fungi in these unique habitats and obtained 1208 fungal strains. Based on preliminary analysis of ITS sequences, 41 isolates belonging to the genus Cadophora were detected. As one of the most frequently encountered genera, the Cadophora isolates were studied in detail. Two phylogenetic trees were constructed: one was based on the partial large subunit nrDNA (LSU) to infer taxonomic placement of our isolates and the other was based on multi-locus sequences of LSU, ITS, TUB and TEF-1α to investigate more exact phylogenetic relationships between Cadophora and allied genera. Combined with morphological characteristics, nine Cadophora species were determined, including seven new to science. Among the new species, only C. inflata produces holoblastic conidia and all the others express phialidic conidiogenesis. All isolates have optimum growth temperature at 20 °C or 25 °C. With more species involved, the currently circumscribed genus became obviously paraphyletic. All members are clustered into two main clades: one clade mainly includes most of the Cadophora species which have phialidic conidiogenesis and we refer to as 'Cadophora s. str.'; the remaining Cadophora species have multiform conidiogenesis and are clustered in the second clade, with members of other genera in Ploettnerulaceae interspersed among the subclades. The results show a high diversity of Cadophora from marine glaciers in the Qinghai-Tibet Plateau and most of them are novel species.

15.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35472001

ABSTRACT

COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19-associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokines , Janus Kinase Inhibitors , Kidney Diseases , Apolipoprotein L1/genetics , Azetidines/pharmacology , COVID-19/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/virology , Organoids/metabolism , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/isolation & purification , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology
16.
Chemistry ; 28(20): e202104302, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35030280

ABSTRACT

This Concept article summarizes recent work on the development of a new form of chiral Raman spectroscopy, eCP-Raman, which combines two spectroscopies: electronic circular dichroism (ECD) and circularly polarized Raman (CP-Raman). First, some puzzling observations while carrying out Raman optical activity (ROA) measurements of several transition metal complexes under resonance are described, as well as the search for the mechanisms responsible. Then an equation for quantifying the eCP-Raman contribution is presented, followed by several examples of how eCP-Raman influences the IR -IL spectra of achiral and chiral solvent molecules and of a number of chiral solutes under resonance. The conditions to extract resonance ROA, when the eCP-Raman contribution is minimized, are also discussed. Finally, we comment on the potential applications of eCP-Raman.

17.
Fungal Divers ; 111(1): 1-335, 2021.
Article in English | MEDLINE | ID: mdl-34899100

ABSTRACT

This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

18.
MycoKeys ; 84: 103-139, 2021.
Article in English | MEDLINE | ID: mdl-34790027

ABSTRACT

Three new species of Russulasection Ingratae, found in Guizhou and Jiangsu Provinces, southern China, are proposed: R.straminella, R.subpectinatoides and R.succinea. Photographs, line drawings and detailed morphological descriptions for these species are provided with comparisons against closely-related taxa. Phylogenetic analysis of the internal transcribed spacer (ITS) region supported the recognition of these specimens as new species. Additionally, R.indocatillus is reported for the first time from China and morphological and phylogenetic data are provided for the Chinese specimens.

19.
Sci Rep ; 11(1): 21537, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728679

ABSTRACT

To evaluate the changes of left atrial (LA) geometry and function in patients with rheumatoid arthritis (RA) by conventional echocardiography and two-dimensional speckle tracking imaging (2D-STI). We enrolled 46 RA patients with a duration of < 5 years as Group I, 40 RA patients with a duration of ≥ 5 years as Group II, and 40 normal subjects as the control group. Conventional echocardiography was conducted to measure traditional parameters. The LA strain during reservoir phase (LASr), LA strain during conduit phase (LAScd), LA strain during contraction phase (LASct), and LA global longitudinal strain (LAGLS) were obtained from 2D-STI. Related ultrasound results were compared. The LASct was significantly higher in Group I than in control group (P < 0.05). The LASr, LAScd, and LAGLS were significantly lower in Group I than in control group (all P < 0.05). The LASr, LAScd, LASct, and LAGLS were significantly lower in Group II than in control group and Group I (all P < 0.05). The function of LA impaired in RA patients, and the impairment aggravated with the clinical course of RA patients. 2D-STI technology can early and accurately evaluate the LA function of RA patients by evaluating LASr, LAScd, LASct, and LAGLS.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Atrial Function, Left , Echocardiography/methods , Heart Atria/pathology , Image Interpretation, Computer-Assisted/methods , Ultrasonography/methods , Adult , Arthritis, Rheumatoid/diagnostic imaging , Case-Control Studies , Female , Heart Atria/diagnostic imaging , Humans , Male , Middle Aged
20.
Angew Chem Int Ed Engl ; 60(40): 22004-22009, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34347923

ABSTRACT

Resonance Raman optical activity (RROA) is commonly measured as the difference in intensity of Raman scattered right and left circularly polarized light, IR -IL , when a randomly polarized light is in resonance with a chiral molecule. Strong and sometimes mono-signate experimental RROA spectra of several chiral solutes were reported previously, although their signs and relative intensities could not be reproduced theoretically. By examining multiple light-matter interaction events which can occur simultaneously under resonance, we show that a new form of chiral Raman spectroscopy, eCP-Raman, a combination of electronic circular dichroism and circularly polarized Raman, prevails. By incorporating the finite-lifetime approach for resonance, the experimental patterns of the model chiral solutes are captured theoretically by eCP-Raman, without any RROA contribution. The results open opportunity for applications of eCP-Raman spectroscopy and for extracting true RROA experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...