Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(32): 17020-17037, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39096278

ABSTRACT

Traditionally, many coatings were merely concentrated on settling the inherent fire protection problem of steel structures, while surface contamination and corrosion susceptibility should also be considered. Concurrently addressing these problems in fireproof efficiency and surface multifunctionality has become an issue of great significance in further expanding the application value in industrial and daily scenarios. Based on this condition, ecofriendly, graphene-based, and superhydrophobic coatings with multifunctional integration were constructed on steel via a one-step spraying method. The as-prepared coatings mainly consist of epoxy resin (EP), silicone resin (SR), a cyclodextrin-based flame retardant (MCDPM), expandable graphite (EG), and multilayered graphene (MG). The results demonstrate that the water contact angle (WCA) and water sliding angle (WSA) of as-prepared coatings can reach 156.8 ± 1.6 and 5.8 ± 0.7°, respectively, revealing good water repellency and self-cleaning properties. The coatings can also exhibit adequate adaptability for various substrates including wood, polyurethane foam, and cotton fabrics. Besides, good durability and robustness of coatings have been also verified via acid/alkali immersion, outdoor exposure, O2/plasma etching, and linear abrasion tests. Simultaneously, the coatings can exhibit excellent anticorrosion capacity for steel materials via a double barrier effect. Most importantly, the coatings have exhibited the lowest backside temperature (234.5 °C) during fire impact tests, suggesting excellent fireproof and heat insulation performance. This fact can be ascribed to the conjunct action between the physical/chemical charring process of flame retardants and the remarkable thermal stability of graphene. Consequently, this article can be expected to further promote the development and application of multifunctional-integrated coatings for steel structures in more fields.

2.
Acta Pharmacol Sin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992121

ABSTRACT

Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.

3.
J Agric Food Chem ; 72(28): 15801-15810, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38962874

ABSTRACT

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.


Subject(s)
Benzopyrans , Fungal Proteins , Multigene Family , Pigments, Biological , Talaromyces , Talaromyces/genetics , Talaromyces/metabolism , Talaromyces/chemistry , Pigments, Biological/chemistry , Pigments, Biological/metabolism , Humans , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Endophytes/genetics , Endophytes/metabolism , Endophytes/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Cell Line, Tumor
4.
EClinicalMedicine ; 69: 102482, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374967

ABSTRACT

Background: Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease and is associated with high mortality rates. The influence of routine clinical parameters on DKD onset in patients with type 2 diabetes mellitus (T2DM) remains uncertain. Methods: In this systematic review and meta-analysis, we searched multiple databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane Library, for studies published from each database inception until January 11, 2024. We included cohort studies examining the association between DKD onset and various clinical parameters, including body mass index (BMI), hemoglobin A1c (HbA1c), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and serum uric acid (UA). Random-effect dose-response meta-analyses utilizing one-stage and/or cubic spline models, were used to estimate correlation strength. This study is registered in PROSPERO (CRD42022326148). Findings: This analysis of 46 studies involving 317,502 patients found that in patients with T2DM, the risk of DKD onset increased by 3% per 1 kg/m2 increase in BMI (relative risk (RR) = 1.03, confidence interval (CI) [1.01-1.04], I2 = 70.07%; GRADE, moderate); a 12% increased risk of DKD onset for every 1% increase in HbA1c (RR = 1.12, CI [1.07-1.17], I2 = 94.94%; GRADE, moderate); a 6% increased risk of DKD onset for every 5 mmHg increase in SBP (RR = 1.06. CI [1.03-1.09], I2 = 85.41%; GRADE, moderate); a 2% increased risk of DKD onset per 10 mg/dL increase in TG (RR = 1.02, CI [1.01-1.03], I2 = 78.45%; GRADE, low); an 6% decreased risk of DKD onset per 10 mg/dL increase in HDL (RR = 0.94, CI [0.92-0.96], I2 = 0.33%; GRADE, high), and a 11% increased risk for each 1 mg/dL increase in UA (RR = 1.11, CI [1.05-1.17], I2 = 79.46%; GRADE, moderate). Subgroup analysis revealed a likely higher risk association of clinical parameters (BMI, HbA1c, LDL, and UA) in patients with T2DM for less than 10 years. Interpretation: BMI, HbA1c, SBP, TG, HDL and UA are potential predictors of DKD onset in patients with T2DM. Given high heterogeneity between included studies, our findings should be interpreted with caution, but they suggest monitoring of these clinical parameters to identify individuals who may be at risk of developing DKD. Funding: Shenzhen Science and Innovation Fund, the Hong Kong Research Grants Council, and the HKU Seed Funds, and Scientific and technological innovation project of China Academy of Chinese Medical Sciences.

5.
Hepatology ; 79(2): 392-408, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37409771

ABSTRACT

BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.


Subject(s)
Inflammasomes , Receptors, Bombesin , Humans , Mice , Animals , Receptors, Bombesin/metabolism , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Caspase 1/metabolism , Leukocytes, Mononuclear , Gastrin-Releasing Peptide/metabolism , Ethanol , Liver/metabolism , Cytokines/metabolism , Interferon Regulatory Factor-1/metabolism
6.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37467831

ABSTRACT

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Subject(s)
MicroRNAs , RNA, Circular , Mice , Animals , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Forkhead Box Protein O3/genetics , RNA-Binding Proteins/metabolism
7.
Synth Syst Biotechnol ; 8(3): 486-497, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37519989

ABSTRACT

Tylosin is a 16-membered macrolide antibiotic widely used in veterinary medicine to control infections caused by Gram-positive pathogens and mycoplasmas. To improve the fermentation titer of tylosin in the hyperproducing Streptomyces xinghaiensis strain TL01, we sequenced its whole genome and identified the biosynthetic gene cluster therein. Overexpression of the tylosin efflux gene tlrC, the cluster-situated S-adenosyl methionine (SAM) synthetase gene metKcs, the SAM biosynthetic genes adoKcs-metFcs, or the pathway-specific activator gene tylR enhanced tylosin production by 18%, 12%, 11%, and 11% in the respective engineered strains TLPH08-2, TLPH09, TLPH10, and TLPH12. Co-overexpression of metKcs and adoKcs-metFcs as two transcripts increased tylosin production by 22% in the resultant strain TLPH11 compared to that in TL01. Furthermore, combinational overexpression of tlrC, metKcs, adoKcs-metFcs, and tylR as four transcripts increased tylosin production by 23% (10.93g/L) in the resultant strain TLPH17 compared to that in TL01. However, a negligible additive effect was displayed upon combinational overexpression in TLPH17 as suggested by the limited increment of fermentation titer compared to that in TLPH08-2. Transcription analyses indicated that the expression of tlrC and three SAM biosynthetic genes in TLPH17 was considerably lower than that of TLPH08-2 and TLPH11. Based on this observation, the five genes were rearranged into one or two operons to coordinate their overexpression, yielding two engineered strains TLPH23 and TLPH24, and leading to further enhancement of tylosin production over TLPH17. In particular, the production of TLPH23 reached 11.35 g/L. These findings indicated that the combinatorial strategy is a promising approach for enhancing tylosin production in high-yielding industrial strains.

8.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37415332

ABSTRACT

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Animals , Mice , Cisplatin/adverse effects , Necroptosis , Acute Kidney Injury/metabolism , Kidney/metabolism , Inflammation/metabolism , Mice, Inbred C57BL
9.
Lab Invest ; 103(4): 100041, 2023 04.
Article in English | MEDLINE | ID: mdl-36870291

ABSTRACT

Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.


Subject(s)
Berberine , Fatty Liver , Leukemia, Myeloid, Acute , Male , Mice , Animals , Sirtuin 1/metabolism , Lipid Metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , AMP-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Mice, Inbred C57BL , Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Ethanol/toxicity , Transcription Factors/metabolism , Sterols/metabolism , Sterols/pharmacology , Leukemia, Myeloid, Acute/metabolism
10.
Front Immunol ; 13: 1015142, 2022.
Article in English | MEDLINE | ID: mdl-36405700

ABSTRACT

Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Kidney/metabolism , Diabetes Mellitus/metabolism
11.
Biomolecules ; 12(8)2022 07 27.
Article in English | MEDLINE | ID: mdl-36008929

ABSTRACT

Alcohol-associated liver disease (ALD) is an intricate disease that results in a broad spectrum of liver damage. The presentation of ALD can include simple steatosis, steatohepatitis, liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Effective prevention and treatment strategies are urgently required for ALD patients. In previous decades, numerous rodent models were established to investigate the mechanisms of alcohol-associated liver disease and explore therapeutic targets. This review provides a summary of the latest developments in rodent models, including those that involve EtOH administration, which will help us to understand the characteristics and causes of ALD at different stages. In addition, we discuss the pathogenesis of ALD and summarize the existing in vitro models. We analyse the pros and cons of these models and their translational relevance and summarize the insights that have been gained regarding the mechanisms of alcoholic liver injury.


Subject(s)
Carcinoma, Hepatocellular , Liver Diseases, Alcoholic , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Ethanol/toxicity , Humans , Liver/pathology , Liver Diseases, Alcoholic/pathology , Liver Neoplasms/pathology
12.
Int Immunopharmacol ; 110: 109034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35834952

ABSTRACT

Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs). Interestingly, miR-301a-3p expression was increased in hepatic fibrosis progression mice while decreased in hepatic fibrosis recovery mice, indicating that miR-301a-3p may participate in the hepatic fibrosis pathology. Functionally, the effects of miR-301a-3p both on hepatic fibrosis progression and regression were assessed in vivo. Inhibiting miR-301a-3p amelioratedmouse liver fibrogenesis and collagen deposition and suppressed HSC activation and fibrogenic factor expression. Whereas, in hepatic fibrosis regression, upregulating miR-301a-3p impaired mouse hepatic fibrosis recovery by inducing HSC activation and triggering inflammation. Consistently, gain-of-function and loss-of-function analysis of miR-301a-3p were performed to evaluate its effects on human HSCs LX-2 cell. We found that suppressing miR-301a-3p inhibited LX-2 cell activation and proliferation, and induced LX-2 cell apoptosis, accompaniedby decreased fibrotic mediators expression. Collectively, these findings suggest miR-301a-3p drives liver fibrogenesis and HSC activation in hepatic fibrosis. Mechanistically, we demonstrated miR-301a-3p binds directly to phosphatase and tensin homolog (PTEN) by luciferase reporter analysis, pull-down, and RIP assay. Indicating that miR-301a-3p plays a critical rolein promotingliverfibrogenesis viamodulating the PTEN/platelet derived growth factor ß (PDGFR-ß) pathway. In conclusion, our findings demonstrate that miR-301a-3p expression is closely correlated with hepatic fibrosis pathology, and that enhancing miR-301a-3p maintains the HSC profibrogenic phenotype, triggers inflammatoryresponses, promotes fibrogenic factor production, and further exacerbates liver fibrogenesis. These findings suggest that miR-301a-3p may serve as a promising diagnostic and prognosis biomarker for hepatic fibrosis treatment.


Subject(s)
Hepatic Stellate Cells , MicroRNAs/metabolism , Animals , Cell Proliferation , Hepatic Stellate Cells/pathology , Humans , Liver Cirrhosis/metabolism , Mice , MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Signal Transduction
13.
Kidney Int ; 102(4): 828-844, 2022 10.
Article in English | MEDLINE | ID: mdl-35752325

ABSTRACT

The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI, possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.


Subject(s)
Acute Kidney Injury , Tissue Inhibitor of Metalloproteinase-2 , Adenosine Diphosphate Ribose , Animals , Biomarkers , Cisplatin/toxicity , Inflammation , Insulin-Like Growth Factor Binding Proteins/genetics , Lipopolysaccharides , Mice , Mice, Knockout , Ubiquitin-Protein Ligases/metabolism
14.
Pharmacol Res ; 177: 106125, 2022 03.
Article in English | MEDLINE | ID: mdl-35149186

ABSTRACT

Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , NF-kappa B , Animals , Chemical and Drug Induced Liver Injury, Chronic/genetics , DNA Methylation , DNA Modification Methylases/genetics , Ethanol/toxicity , Inflammation/genetics , Mice , NF-kappa B/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
15.
Front Cardiovasc Med ; 9: 1090616, 2022.
Article in English | MEDLINE | ID: mdl-36712277

ABSTRACT

Introduction: Chronic heart failure (CHF) has become an increasing concern with the aging of the population. This study aims to evaluate the effectiveness and safety of Qili Qiangxin capsules (QLQX) for CHF. Methods: A systematic review and meta-analysis on clinical studies was conducted. The mechanisms of preclinical studies were summarized. Results: We searched six electronic databases by 20 July 2022, and finally, 7 preclinical experiments (PEs) and 24 randomized controlled trials were included. The risk of bias was accessed by the SYRCLE and RoB 2.0 tool, respectively. PEs indicated that QLQX suppresses myocardial apoptosis, inhibits renin-angiotensin-aldosterone system activation, improves water retention, and enhances cardiocyte remodeling. In clinical studies, compared with routine treatment, QLQX could improve the indicators: clinical efficacy rate (RR = 1.16, 95% CI [1.12, 1.22], GRADE: moderate), left ventricular end-diastolic dimension (SMD = -1.04, 95% CI [-1.39, -0.70], GRADE: low), left ventricular ejection fraction (SMD = 1.20, 95% CI [0.97, 1.43], GRADE: moderate), 6-minute walk distance (SMD = 1.55, 95% CI [0.89, 2.21], GRADE: low), brain natriuretic peptide (SMD = -0.78, 95% CI [-1.06, -0.51], GRADE: low), N-terminal pro-brain natriuretic peptide (SMD = -2.15, 95% CI [-3.60, -0.71], GRADE: low), and adverse events (RR = 0.46, 95% CI [0.25, 0.87], GRADE: low). Discussion: In summary, QLQX exerts a potential mechanism of utility on myocardial apoptosis and cardiac function and has noteworthy clinical adjuvant efficacy and safety in patients with CHF. Systematic review registration: https://www.crd.york.ac.uk/prospero/.

16.
Front Med (Lausanne) ; 8: 796724, 2021.
Article in English | MEDLINE | ID: mdl-34926535

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.

17.
Chin Med ; 16(1): 118, 2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34775979

ABSTRACT

BACKGROUND: Buyang Huanwu Decoction (BHD) is a classical Chinese Medicine formula empirically used for diabetic nephropathy (DN). However, its therapeutic efficacies and the underlying mechanisms remain obscure. In our study, we aim to evaluate the renoprotective effect of BHD on a streptozotocin (STZ)-induced diabetic nephropathy mouse model and explore the potential underlying mechanism in mouse mesangial cells (MCs) treated with high glucose in vitro, followed by screening the active compounds in BHD. METHODS: Mice were received 50 mg/kg streptozotocin (STZ) or citrate buffer intraperitoneally for 5 consecutive days. BHD was intragastrically administrated for 12 weeks starting from week 4 after the diabetes induction. The quality control and quantitative analysis of BHD were studied by high-performance liquid chromatography (HPLC). Renal function was evaluated by urinary albumin excretion (UAE) using ELISA. The mesangial matrix expansion and renal fibrosis were measured using periodic acid-schiff (PAS) staining and Masson Trichrome staining. Mouse mesangial cells (MCs) were employed to study molecular mechanisms. RESULTS: We found that the impaired renal function in diabetic nephropathy was significantly restored by BHD, as indicated by the decreased UAE without affecting the blood glucose level. Consistently, BHD markedly alleviated STZ-induced diabetic glomerulosclerosis and tubulointerstitial injury as shown by PAS staining, accompanied by a reduction of renal inflammation and fibrosis. Mechanistically, BHD inhibited the activation of TGF-ß1/Smad3 and NF-κB signaling in diabetic nephropathy while suppressing Arkadia expression and restoring renal Smad7. We further found that calycosin-7-glucoside (CG) was one of the active compounds from BHD, which significantly suppressed high glucose-induced inflammation and fibrosis by inhibiting TGF-ß1/Smad3 and NF-κB signaling pathways in mesangial cells. CONCLUSION: BHD could attenuate renal fibrosis and inflammation in STZ-induced diabetic kidneys via inhibiting TGF-ß1/Smad3 and NF-κB signaling while suppressing the Arkadia and restoring renal Smad7. CG could be one of the active compounds in BHD to suppress renal inflammation and fibrosis in diabetic nephropathy.

18.
Int J Biol Sci ; 17(14): 3911-3922, 2021.
Article in English | MEDLINE | ID: mdl-34671208

ABSTRACT

Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-ß/Smad3-dependent mechanism. Methods: Role and mechanisms of TGF-ß/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E). Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1ß, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-ß/Smad3 signaling. Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-ß/Smad3 signaling.


Subject(s)
C-Reactive Protein/metabolism , Fibrosis/prevention & control , Gene Deletion , Inflammation/prevention & control , Kidney Diseases/prevention & control , Smad3 Protein/genetics , Ureteral Obstruction/prevention & control , Animals , Cell Line , Disease Models, Animal , Male , Mice , Mice, Knockout , Rats
19.
Front Immunol ; 12: 585412, 2021.
Article in English | MEDLINE | ID: mdl-34262554

ABSTRACT

Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane-cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1), and C-terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.


Subject(s)
Inflammation/genetics , Inflammation/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 12/immunology , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/genetics , Humans , Inflammation/physiopathology , Mice , Phosphorylation , Protein Binding , Signal Transduction
20.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2543-2553, 2021 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-34327919

ABSTRACT

We designed and fabricated a novel high throughput brain-on-chip with three dimensional structure with the aim to simulate the in vivo three-dimensional growth environment for brain tissues. The chip consists of a porous filter and 3D brain cell particles, and is loaded into a conventional 96-well plate for use. The filter and the particle molds were fabricated by using computer modeling, 3D printing of positive mold and agarose-PDMS double reversal mold. The 3D cell particles were made by pouring and solidifying a suspension of mouse embryonic brain cells with sodium alginate into a cell particle mold, and then cutting the resulting hydrogel into pieces. The loaded brain-on-chip was used to determine the neurotoxicity of pesticides. The cell particles were exposed to 0, 10, 30, 50, 100 and 200 µmol/L of chlorpyrifos or imidacloprid, separated conveniently from the medium by removing the porous filter after cultivation. Subsequently, cell proliferation, acetylcholinesterase activity and lactate dehydrogenase release were determined for toxicity evaluation. The embryonic brain cells were able to grow and proliferate normally in the hydrogel particles loaded into the filter in a 96-well plate. Pesticide neurotoxicity test showed that both chlorpyrifos and imidacloprid presented dose-dependent inhibition on cell growth and proliferation. Moreover, the pesticides showed inhibition on acetylcholinesterase activity and increase release of lactate dehydrogenase. However, the effect of imidacloprid was significantly weaker than that of chlorpyrifos. In conclusion, a novel brain-on-chip was developed in this study, which can be used to efficiently assess the drug neurotoxicity, pharmacodynamics, and disease mechanism by combining with a microtiterplate reader.


Subject(s)
Chlorpyrifos , Pesticides , Animals , Brain , Chlorpyrifos/toxicity , Culture Media , Mice , Oligonucleotide Array Sequence Analysis , Pesticides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL