Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(20): 10705-10717, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38736288

ABSTRACT

The intricate development of liquid-crystal lubricants necessitates the timely and accurate prediction of their tribological performance in different environments and an assessment of the importance of relevant parameters. In this study, a classification model using Gaussian noise extreme gradient boosting (GNBoost) to predict tribological performance is proposed. Three additives, polysorbate-85, polysorbate-80, and graphene oxide, were selected to fabricate liquid-crystal lubricants. The coefficients of friction of these lubricants were tested in the rotational mode using a universal mechanical tester. A model was designed to predict the coefficient of friction through data augmentation of the initial data. The model parameters were optimized using particle swarm optimization techniques. This study provides an effective example for lubricant performance evaluation and formulation optimization.

2.
Talanta ; 269: 125452, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38064932

ABSTRACT

Most birds are monomorphic species and breeds, which makes it difficult to determine their gender by appearances, especially the pigeon is a farm animal with economic interest in meat production, ornamentals, sports, and experimental animals. Until now, the available methods for determining the gender of pigeons have mainly consisted of endoscopy, laparoscopy, karyotyping, polymerase chain reaction (PCR), and other similar techniques. Nonetheless, these methods have notable limitations, such as high expenses, invasiveness, and time-consuming procedures, which hinder their practicality for efficiently determining the gender of pigeons. Therefore, an easy, accurate, sensitive, on-site, affordable, and applicable rapid identification of the gender of the pigeon is widely needed for the owner of the pigeon. The purpose of this study was to develop and evaluate the efficacy of Cross-priming amplification (CPA) combined with an immune-chromatographic strip (CPA-strip) for gender identification of the pigeon. The methodology was optimized through various experimental trials. Subsequently, ten samples collected from pigeons were subjected to analysis using the optimized CPA-strip assay, and the results indicated that all female samples were accurately detected. In contrast, the blood samples collected from chickens and ducks were negative when tested with the CPA-strip assay. In conclusion, our study demonstrates the successful establishment of an immune-chromatographic CPA-strip assay for the on-site gender determination of pigeons with high accuracy.


Subject(s)
Columbidae , Cross-Priming , Female , Animals , Chickens , Polymerase Chain Reaction , Meat
3.
J Virol ; 97(3): e0176422, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36779760

ABSTRACT

Respiratory syncytial virus (RSV) infects more than 60% of infants in their first year of life. Since an experimental formalin-inactivated (FI) RSV vaccine tested in the 1960s caused enhanced respiratory disease (ERD), few attempts have been made to vaccinate infants. ERD is characterized by Th2-biased responses, lung inflammation, and poor protective immune memory. Innate immune memory displays an increased nonspecific effector function upon restimulation, a process called trained immunity, or a repressed effector function upon restimulation, a process called tolerance, which participates in host defense and inflammatory disease. Mycobacterium bovis bacillus Calmette-Guérin (BCG) given at birth can induce trained immunity as well as heterologous Th1 responses. We speculate that BCG given at birth followed by FI-RSV may alleviate ERD and enhance protection through promoting trained immunity and balanced Th immune memory. Neonatal mice were given BCG at birth and then vaccinated with FI-RSV+Al(OH)3. BCG/FI-RSV+Al(OH)3 induced trained macrophages, tissue-resident memory T cells (TRM), and specific cytotoxic T lymphocytes (CTL) in lungs and inhibited Th2 and Th17 cell immune memory, all of which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented the innate tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. Therefore, BCG given at birth to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants. IMPORTANCE RSV is the leading cause of severe lower respiratory tract infection of infants. ERD, characterized by Th2-biased responses, inflammation, and poor immune memory, has been an obstacle to the development of safe and effective killed RSV vaccines. Innate immune memory participates in host defense and inflammatory disease. BCG given at birth can induce trained immunity as well as heterologous Th1 responses. Our results showed that BCG/FI-RSV+Al(OH)3 induced trained macrophages, TRM, specific CTL, and balanced Th cell immune memory, which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. BCG at birth as an adjuvant to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants.


Subject(s)
BCG Vaccine , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Animals , Mice , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Lung/immunology , Macrophages/immunology , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Spleen/immunology , Th1 Cells/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
4.
Front Immunol ; 13: 977235, 2022.
Article in English | MEDLINE | ID: mdl-36211408

ABSTRACT

Background: Infants with respiratory syncytial virus (RSV)-associated bronchiolitis are at increased risk of childhood asthma. Recent studies demonstrated that certain infections induce innate immune memory (also termed trained immunity), especially in macrophages, to respond more strongly to future stimuli with broad specificity, involving in human inflammatory diseases. Metabolic reprogramming increases the capacity of the innate immune cells to respond to a secondary stimulation, is a crucial step for the induction of trained immunity. We hypothesize that specific metabolic reprogramming of lung trained macrophages induced by neonatal respiratory infection is crucial for childhood allergic asthma. Objective: To address the role of metabolic reprogramming in lung trained macrophages induced by respiratory virus infection in allergic asthma. Methods: Neonatal mice were infected and sensitized by the natural rodent pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the memory phase were re-stimulated to investigate trained immunity and metabonomics. Adoptive transfer, metabolic inhibitor and restore experiments were used to explore the role of specific metabolic reprogramming in childhood allergic asthma. Results: PVM infection combined with OVA sensitization in neonatal mice resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in childhood of mice. Lung CD11b+ macrophages in the memory phage increased, and showed enhanced inflammatory responses following re-stimulation, suggesting trained macrophages. Adoptive transfer of the trained macrophages mediated the allergic asthma in childhood. The trained macrophages showed metabolic reprogramming after re-stimulation. Notably, proline biosynthesis remarkably increased. Inhibition of proline biosynthesis suppressed the development of the trained macrophages as well as the Th1/Th17 type allergic asthma, while supplement of proline recovered the trained macrophages as well as the allergic asthma. Conclusion: Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood. Proline metabolism could be a well target for prevention of allergic asthma in childhood.


Subject(s)
Asthma , Hypersensitivity , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Allergens , Animals , Humans , Macrophages , Mice , Mice, Inbred BALB C , Ovalbumin , Proline
5.
J Pharm Biomed Anal ; 219: 114938, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35850015

ABSTRACT

OBJECTIVE: We sought to develop and optimize a targeted bile acids (BAs) metabolomics method based on a dynamic multiple reaction monitoring (dMRM) strategy and explored the dynamic alterations of BAs in diarrhea induced by capecitabine in a mouse model. METHOD: The targeted metabolomics method was developed using an Agilent 6460A triple quadrupole mass spectrometer, and 41 types of BAs were monitored in negative ionization mode. The mass spectrometer detection was optimized using dMRM to enhance the responses, separation, and peak shape and to shorten the analysis time. A mouse model of diarrhea was established by multiple administration of capecitabine, and plasma samples were collected at baseline and the end of drug administration for subsequent BAs analysis. RESULTS: The targeted BA metabolomics method achieved shorter chromatographic separation time (10 min) for 41 BAs, with good peak shapes and response increases of 3- to 10-fold after application of dMRM. The mouse model of capecitabine-induced diarrhea was established, and the three BAs 23-norcholic acid, isolithocholic acid, and isodeoxycholic acid in the baseline samples contributed the most to differentiating mice with diarrhea from those without diarrhea. For mice that ultimately developed diarrhea, apocholic acid, isodeoxycholic acid, and 7-ketodeoxycholic acid exhibited the largest change in concentrations compared with their baseline concentrations. CONCLUSION: The dMRM strategy has obvious advantages compared with common MRM. The results in model mice showed that a differentiated profile of BAs in the baseline may indicate biomarkers of diarrhea induced by capecitabine, and disturbed homeostasis may explain the metabolomic mechanism of diarrhea occurrence.


Subject(s)
Bile Acids and Salts , Metabolomics , Animals , Capecitabine/adverse effects , Chromatography, High Pressure Liquid/methods , Diarrhea/chemically induced , Metabolomics/methods , Mice
6.
Viruses ; 14(5)2022 05 17.
Article in English | MEDLINE | ID: mdl-35632808

ABSTRACT

Pseudorabies virus (PRV) is the causative agent of pseudorabies (PR). It can infect a wide range of mammals. PRV infection can cause severe acute neuropathy (the so-called "mad itch") in nonnatural hosts. PRV can infect the peripheral nervous system (PNS), where it can establish a quiescent, latent infection. The dorsal root ganglion (DRG) contains the cell bodies of the spinal sensory neurons, which can transmit peripheral sensory signals, including itch and somatic pain. Little attention has been paid to the underlying mechanism of the itch caused by PRV in nonnatural hosts. In this study, a mouse model of the itch caused by PRV was elaborated. BALB/c mice were infected intramuscularly with 105 TCID50 of PRV TJ. The frequency of the bite bouts and the durations of itch were recorded and quantified. The results showed that the PRV-infected mice developed spontaneous itch at 32 h postinfection (hpi). The frequency of the bite bouts and the durations of itch were increased over time. The mRNA expression levels of the receptors and the potential cation channels that are relevant to the itch-signal transmission in the DRG neurons were quantified. The mRNA expression levels of tachykinin 1 (TAC1), interleukin 2 (IL-2), IL-31, tryptases, tryptophan hydroxylase 1 (TPH1), and histidine decarboxylase (HDC) were also measured by high-throughput RNA sequencing and real-time reverse transcription PCR. The results showed that the mean mRNA level of the HDC in the DRG neurons isolated from the PRV-infected mice was approximately 25-fold higher than that of the controls at 56 hpi. An immunohistochemistry (IHC) was strongly positive for HDC in the DRG neurons of the PRV-infected mice, which led to the high expression of histamine at the injected sites. The itch of the infected mice was inhibited by chlorphenamine hydrogen maleate (an antagonist for the histamine H1 receptor) in a dose-dependent manner. The mRNA and protein levels of the HDC in the DRG neurons were proportional to the severity of the itch induced by different PRV strains. Taken together, the histamine synthesized by the HDC in the DRG neurons was responsible for the PRV-induced itch in the mice.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Animals , Disease Models, Animal , Herpesvirus 1, Suid/metabolism , Histamine , Mammals , Mice , Pruritus/chemically induced , RNA, Messenger/metabolism
7.
Anal Biochem ; 646: 114636, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35283069

ABSTRACT

The purpose of this study is to establish and validate a sensitive, robust and rapid liquid chromatography-tandem mass spectrometry method for quantifying the aescinate A and aescinate B in human plasma and assessing the association of phlebitis and aescinate A and aescinate B in vivo exposure. The chromatographic separation was completed on Agilent ZORBAX SB-C18 (2.1 mm × 100 mm, 3.5 µm, Agilent, USA) column with isocratic elution. The flow rate was 0.3 mL/min and the total run time was optimized within 5 min. The protein precipitation was applied to pretreat plasma sample using methanol as precipitant. The data acquisition was achieved with positive electrospray ionization in multi-reaction monitoring mode for both aescinate A and aescinate B. The calibration range of aescinate A and aescinate B are constructed in 100-2000 ng/mL, and their correlation coefficients are both >0.990. The intra-day and inter-day precision and accuracy of this method are less than 9.04% and within -13.75% and -0.93%. This analytical method has been successfully applied for the determination of plasma aescinate A and aescinate B concentrations in patients with cerebral infarction, and the results showed that the incidence and grade of phlebitis were not associated with the in vivo exposure of aescinate A and aescinate B.


Subject(s)
Phlebitis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Humans , Phlebitis/diagnosis , Reproducibility of Results , Tandem Mass Spectrometry/methods
8.
J Pharm Biomed Anal ; 213: 114691, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35257982

ABSTRACT

Depression is a mental health disorder characterized by chronic negative mood, and depression has become a major threat to human health and quality of life. Anyupeibo capsule, a fifth-class new Chinese medicine, was prepared with extracts of Piper laetispicum C.DC. (Piperaceae), and the alkaloid K6 (5'-methoxy-3',4'-methyl-enedioxycinnamic-acidisob-utylamide-isobutylamide) was found to be the main active component. Using high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (LC-MS/MS), we developed a method to quantify the concentration of K6 in serum samples from patients with depression. Pretreatment of samples was completed based on solid-phase extraction, and the mobile phase for subsequent LC analysis consisted of aqueous ammonium acetate (0.1 mmol/L, phase A) and acetonitrile (phase B) with isocratic elution at 60% B. Chromatographic separation of K6 was achieved within 3 min with an Agilent ZORBAX SB-C18 column (2.1 × 150 mm, 3.5 µm) at a flow rate of 0.3 mL/min. A linear regression equation for K6 yielded correlation coefficients of r2 > 0.99 within a linear range 0.0503-100.5000 ng/mL. Extraction recovery ranged from 85.33% to 101.18%, and the matrix effect ranged from 87.15% to 100.28%. The inter-day and intra-day precision values-expressed as relative standard deviation-were less than 15%, and the corresponding accuracy values were within ±15%. All validation results for stability, specificity, and carry-over met the requirements of Pharmacopoeia. The LC-MS/MS method was applied to determine the K6 concentration in serum samples from patients with depression in a phase III clinical trial of Anyupeibo capsule.


Subject(s)
Quality of Life , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid/methods , Depression , Humans , Reproducibility of Results , Tandem Mass Spectrometry/methods
9.
Langmuir ; 38(1): 482-494, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34978195

ABSTRACT

With the rise of carbon neutrality, the applications of carbon-based materials are gaining considerable attention. Graphene oxide (GO) is a two-dimensional sheet with epoxy and hydroxyl groups on the basal plane and carboxyl groups at the edge. In order to change the oil/water (o/w) interfacial activity, GO was controlled and modified by dodecylamine to get two kinds of functionalized GOs (fGOs), named as basal plane-functionalized GO (bGO) and edge-functionalized GO (eGO), respectively. The interfacial tension measurement showed that fGOs could reduce more interfacial tension at the poly-α-olefin/water interface than those at synthetic esters or aromatic compounds/water interfaces. Besides, eGO can reduce more poly-α-olefin-4/water interfacial tension compared to bGO. The interfacial dilatational rheology of eGO and fatty alcohol polyoxyethylene ether-4 (MOA4) showed that MOA4 gradually replaced eGO at the interface with the increase of MOA4, until the interface was completely occupied. eGO and MOA4 complex emulsion exhibited the best friction-reducing performance at 250 rpm. The coefficient of friction (COF) curves of the emulsions with eGO showed two platforms, with the COF reduced by 37.42% at the most. The rheological results of emulsions showed that the addition of eGO increased the elasticity of the emulsion. Emulsions showed shear-thinning and friction-thickening properties, which make it easier for the emulsion to form a lubricating film on the metal surface. Our research results suggested that the functionalization on the edge of GO will change the interfacial properties significantly, which have widespread applications in the encapsulation of active materials, surface protection, adsorption, and separation of pollutants.

10.
Int J Pharm ; 607: 121007, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34391854

ABSTRACT

Liquid crystals (LCs) are widely used for drug delivery due to their controlled and sustained drug release properties. In this paper, drug crystallization encapsulated liquid crystal emulsion, a novel drug delivery system, was proposed. The lamellar liquid crystals formed by hydrogenated lecithin, which are similar to the skin stratum corneum lipid structure, are adopted as the drug carrier to encapsulate non-steroidal anti-inflammatory drugs (NSAIDs). As the model drug, ketoprofen exists in the hydrophobic core of emulsion as a drug crystal when squalane is used as the oil phase. The microstructure, sustained drug release behaviors, physicochemical property and biocompatibility of the system were examined by polarized light microscopy, rheological measurements, differential scanning calorimetry, X-ray diffraction, small-angle X-ray scattering, in vitro release study, and in vitro cellular cytotoxicity assay. The results have shown that the novel system lowers the drug crystal melting point and improves the thermal stability of liquid crystal structure. Besides, the excellent biocompatibility and sustained release property through the additional dissolution step of drug crystal show its application potentials in the topical cosmeceuticals. The results will also be helpful for in-depth understanding of the physical state of encapsulated drug in the liquid crystal carrier systems.


Subject(s)
Liquid Crystals , Crystallization , Drug Carriers , Emulsions , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...