Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Adv Sci (Weinh) ; : e2308786, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696610

ABSTRACT

N6-methyladenosine (m6A) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption. Here, it is reported that genetic deletion of Mettl3 alleviates periodontal destruction via suppressing NLRP3 inflammasome activation. Mechanistically, the stability of TNFAIP3 (also known as A20) transcript is significantly attenuated upon m6A modification. When silencing METTL3, accumulated TNFAIP3 functioning as a ubiquitin-editing enzyme facilitates the ubiquitination of NEK7 [NIMA (never in mitosis gene a)-related kinase 7], and subsequently impairs NLRP3 inflammasome assembly. Furtherly, Coptisine chloride, a natural small-molecule, is discovered as a novel METTL3 inhibitor and performs therapeutic effect on periodontitis. The study unveils a previously unknown pathogenic mechanism of METTL3-mediated m6A modifications in periodontitis and indicates METTL3 as a potential therapeutic target.

2.
FASEB J ; 38(7): e23597, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581235

ABSTRACT

Sepsis is a life-threatening condition that occurs when the body responds to an infection but subsequently triggers widespread inflammation and impaired blood flow. These pathologic responses can rapidly cause multiple organ dysfunction or failure either one by one or simultaneously. The fundamental common mechanisms involved in sepsis-induced multiple organ dysfunction remain unclear. Here, employing quantitative global and phosphoproteomics, we examine the liver's temporal proteome and phosphoproteome changes after moderate sepsis induced by cecum ligation and puncture. In total, 4593 global proteins and 1186 phosphoproteins according to 3275 phosphosites were identified. To characterize the liver-kidney comorbidity after sepsis, we developed a mathematical model and performed cross-analyses of liver and kidney proteome data obtained from the same set of mice. Beyond immune response, we showed the commonly disturbed pathways and key regulators of the liver-kidney comorbidity are linked to energy metabolism and consumption. Our data provide open resources to understand the communication between the liver and kidney as they work to fight infection and maintain homeostasis.


Subject(s)
Proteome , Sepsis , Mice , Animals , Multiple Organ Failure/complications , Multiple Organ Failure/pathology , Liver/metabolism , Kidney/metabolism , Sepsis/metabolism , Disease Models, Animal
3.
Clin Transl Med ; 14(4): e1658, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659080

ABSTRACT

BACKGROUND: Chordoma, a rare bone tumour with aggressive local invasion and high recurrence rate with limited understanding of its molecular mechanisms. Circular RNAs (circRNAs) have been extensively implicated in tumorigenesis, yet their involvement in chordoma remains largely unexplored. N6-methyladenosine (m6A) modification holds a crucial function in regulating protein translation, RNA degradation and transcription. METHODS: Initially, screening and validation of circTEAD1 in chordoma were conducted by high-throughput sequencing. Subsequently, sh-circTEAD1 and an overexpression plasmid were constructed. Colony formation assays, cell counting kit-8, Transwell and wound healing assays were utilized to validate the function of circTEAD1 in vitro. RNA pull-down assays identified the binding proteins of circTEAD1, which underwent verification through RNA immunoprecipitation (RIP). Methylated RIP assays were conducted to detect the m6A binding sites. Following this, luciferase assay, RT-qPCR, RIP and Western blotting analyses were conducted, revealing that Yap1 was the direct target of circTEAD1. Afterwards, the same methods were utilized for the validation of the function of Yap1 in chordoma in vitro. Finally, the regulatory relationship between circTEAD1 and Yap1 in chordoma was verified by an in vivo tumour formation assay. RESULTS: CircTEAD1 was identified as an upregulated circRNA in chordoma specimens, with heightened circTEAD1 expression emerging as a prognostic indicator. In vitro experiments convincingly demonstrated that circTEAD1 significantly promoted chordoma cell invasion, migration and aggressiveness. Furthermore, the analysis revealed that methyltransferase-like 3-mediated m6A modification facilitated the cytoplasmic export of circTEAD1. The circTEAD1/IGF2BP3/Yap1 mRNA RNA-protein ternary complex not only bolstered the stability of Yap1 mRNA but also exerted a pivotal role in driving chordoma tumorigenesis. CONCLUSIONS: In this study, the role of m6A-modified circTEAD1 in chordoma was identified. The findings offer novel insights into the potential molecular targets for chordoma therapy, shedding light on the intricate interplay between circRNAs, m6A modification and Yap1 mRNA in chordoma pathogenesis.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Chordoma , RNA, Circular , Transcription Factors , YAP-Signaling Proteins , Humans , Adenosine/metabolism , Adenosine/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Chordoma/genetics , Chordoma/pathology , Chordoma/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Mice , Cell Line, Tumor
4.
J Orthop Surg Res ; 19(1): 240, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622736

ABSTRACT

OBJECTIVE: To assess the radiographic outcomes, clinical outcomes and complications of percutaneous kyphoplasty (PKP) with and without posterior pedicle screw fixation (PPSF) in the treatment of severe osteoporotic vertebral compression fractures (sOVCF) with nonunion. METHODS: This study involved 51 patients with sOVCF with nonunion who underwent PKP or PPSF + KP. The operation time, intraoperative blood loss, volume of injected bone cement, operation costs and hospital stays were all recorded. In addition, the Visual Analogue Scale (VAS) and the Oswestry Disability Index (ODI) were assessed separately for each patient before and after surgery. RESULTS: Compared with the PPSF + KP group, the PKP group had shorter operation time, less intraoperative blood loss, shorter hospital stays and fewer operation costs. However, cobb's angle improvement (13.4 ± 4.3° vs. 21.4 ± 5.3°), VWR improvement ratio (30.4 ± 11.5% vs. 52.8 ± 12.7%), HA (34.9 ± 9.0% vs. 63.7 ± 7.6%) and HM (28.4 ± 11.2% vs. 49.6 ± 7.7%) improvement ratio were all higher in PPSF + KP group than that in PKP group. In addition, the ODI index and VAS score in both groups were significantly decreased at the postoperative and final follow-up. PKP group's postoperative VAS score was significantly lower than that in PPSF + KP group, but there was no statistically significant difference in VAS score at the last follow-up. CONCLUSION: PKP and PPSF + KP can both effectively relieve the pain associated with sOVCF with nonunion. PPSF + KP can achieve more satisfactory vertebral reduction effects compared to PKP. However, PKP was less invasive and it has more advantages in shortening operation time and hospital stay, as well as decreasing intraoperative blood loss and operation costs.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Pedicle Screws , Spinal Fractures , Humans , Fractures, Compression/diagnostic imaging , Fractures, Compression/surgery , Fractures, Compression/drug therapy , Blood Loss, Surgical , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Spinal Fractures/drug therapy , Treatment Outcome , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/surgery , Osteoporotic Fractures/drug therapy , Bone Cements/therapeutic use , Retrospective Studies
5.
Int J Oral Sci ; 16(1): 10, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296940

ABSTRACT

Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.


Subject(s)
Diabetes Mellitus, Experimental , Magnesium , Mice , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Magnesium/pharmacology , Magnesium/metabolism , Osseointegration , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , NF-E2-Related Factor 2/metabolism
6.
Eur Spine J ; 33(4): 1490-1497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38062266

ABSTRACT

BACKGROUND: Vertebral augmentation, such as vertebroplasty (VP) or kyphoplasty (KP), has been utilized for decades to treat OVCFs; however, the precise impact of this procedure on reducing mortality risk remains a topic of controversy. This study aimed to explore the potential protective effects of vertebral augmentation on mortality in patients with osteoporotic vertebral compression fractures (OVCFs) using a large-scale meta-analysis. MATERIALS AND METHODS: Cochrane Library, Embase, MEDLINE, PubMed and Web of Science databases were employed for literature exploration until May 2023. The hazard ratios (HRs) and 95% confidence intervals (CIs) were utilized as a summary statistic via random-effect models. Statistical analysis was executed using Review Manager 5.3 software. RESULTS: After rigorous screening, a total of five studies with substantial sample sizes were included in the quantitative meta-analysis. The total number of participants included in the study was an 2,421,178, comprising of 42,934 cases of vertebral augmentation and 1,991,244 instances of non-operative management. The surgical intervention was found to be significantly associated with an 18% reduction in the risk of mortality (HR 0.82; 95% CI 0.78, 0.85). Subgroup analysis revealed a remarkable 71% reduction in mortality risk following surgical intervention during short-term follow-up (HR 0.29; 95% CI 0.26, 0.32). Furthermore, KP exhibited a superior and more credible decrease in the risk of mortality when compared to VP treatment. CONCLUSIONS: Based on a comprehensive analysis of large samples, vertebral augmentation has been shown to significantly reduce the mortality risk associated with OVCFs, particularly in the early stages following fractures. Furthermore, it has been demonstrated that KP is more reliable and effective than VP in terms of mitigating mortality risk.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Kyphoplasty/methods , Fractures, Compression/surgery , Spinal Fractures/etiology , Osteoporotic Fractures/surgery , Vertebroplasty/methods , Treatment Outcome
7.
J Orthop Surg Res ; 18(1): 950, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082370

ABSTRACT

OBJECTIVE: Although spinal endoscopic techniques have shown great advantages in the treatment of single-segment lumbar disk herniation (LDH), the therapeutic advantages for double-segment LDH are controversial. To compare the outcomes of percutaneous endoscopic interlaminar discectomy (PEID) versus conventional open lumbar discectomy (COLD) for the treatment of L4/5 and L5/S1 double-segmental LDH. METHODS: From January 2016 to September 2021, we included 50 patients with double-segmental LDH who underwent PEID (n = 25) or COLD (n = 25). The clinical outcomes between the two groups were evaluated using the visual analog scale (VAS), the Oswestry disability index (ODI), and the modified MacNab criteria. Moreover, the incision length, operation time, intraoperative fluoroscopy time, postoperative bedtime, hospital stays, and complications were also recorded and compared after surgery. RESULTS: In both groups, the VAS and ODI scores at different timepoints postoperatively were significantly improved compared with those preoperatively (P < 0.05) According to the modified MacNab criteria, the excellent or good outcome rate was 92% in the PEID group and 88% in the COLD group. The PEID group had shorter incision length, postoperative bedtime, and hospital stays than the COLD group. However, the operation time was shorter and intraoperative fluoroscopy time was fewer in the COLD group. In addition, there was no significant difference between the two groups in terms of surgical complications during the postoperative follow-up period. CONCLUSIONS: Both PEID and COLD have good efficacy and high safety for management of L4/5 and L5/S1 double-segmental LDH. Compared with the COLD group, the PEID group had more operative time as well as more intraoperative fluoroscopy, but it had a more minimally invasive surgical incision as well as faster postoperative recovery.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Humans , Intervertebral Disc Displacement/diagnostic imaging , Intervertebral Disc Displacement/surgery , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Retrospective Studies , Endoscopy/methods , Diskectomy, Percutaneous/methods , Diskectomy/methods , Treatment Outcome
8.
J Nanobiotechnology ; 21(1): 453, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017517

ABSTRACT

BACKGROUND: Cell transplantation has been demonstrated as a promising approach in tissue regeneration. However, the reactive oxygen species (ROS) accumulation and inflammation condition establish a harsh microenvironment in degenerated tissue, which makes the transplanted cells difficult to survive. METHODS: In this study, we constructed a keep-charging hydrogel microsphere system to enable cells actively proliferate and function in the degenerated intervertebral disc. Specifically, we combined Mg2+ to histidine-functionalized hyaluronic acid (HA-His-Mg2+) through coordination reaction, which was further intercrossed with GelMA to construct a double-network hydrogel microsphere (GelMA/HA-His-Mg2+, GHHM) with microfluidic methods. In vitro, the GHHM loaded with nucleus pulposus cells (GHHM@NPCs) was further tested for its ability to promote NPCs proliferation and anti-inflammatory properties. In vivo, the ability of GHHM@NPCs to promote regeneration of NP tissue and rescue intervertebral disc degeneration (IVDD) was evaluated by the rat intervertebral disc acupuncture model. RESULTS: The GHHM significantly enhanced NPCs adhesion and proliferation, providing an ideal platform for the NPCs to grow on. The loaded NPCs were kept active in the degenerative intervertebral disc microenvironment as charged by the Mg2+ in GHHM microspheres to effectively support the loaded NPCs to reply against the ROS-induced inflammation and senescence. Moreover, we observed that GHHM@NPCs effectively alleviated nucleus pulposus degeneration and promoted its regeneration in the rat IVDD model. CONCLUSION: In conclusion, we constructed a keep charging system with a double-network hydrogel microsphere as a framework and Mg2+ as a cell activity enhancer, which effectively maintains NPCs active to fight against the harsh microenvironment in the degenerative intervertebral disc. The GHHM@NPCs system provides a promising approach for IVDD management.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Microspheres , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Inflammation/metabolism
9.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37751293

ABSTRACT

Calponin 2 (CNN2) is a prominent actin stabilizer. It regulates fatty acid oxidation (FAO) by interacting with estrogen receptor 2 (ESR2) to determine kidney fibrosis. However, whether CNN2 is actively involved in acute kidney injury (AKI) remains unclear. Here, we report that CNN2 was induced in human and animal kidneys after AKI. Knockdown of CNN2 preserved kidney function, mitigated tubular cell death and inflammation, and promoted cell proliferation. Distinct from kidney fibrosis, proteomics showed that the key elements in the FAO pathway had few changes during AKI, but we identified that 3-hydroxymethylglutaryl-CoA synthase 2 (Hmgcs2), a rate-limiting enzyme of endogenous ketogenesis that promotes cell self-renewal, was markedly increased in CNN2-knockdown kidneys. The production of ketone body ß-hydroxybutyrate and ATP was increased in CNN2-knockdown mice. Mechanistically, CNN2 interacted with ESR2 to negatively regulate the activities of mitochondrial sirtuin 5. Activated sirtuin 5 subsequently desuccinylated Hmgcs2 to produce energy for mitigating AKI. Understanding CNN2-mediated discrete fine-tuning of protein posttranslational modification is critical to optimize organ performance after AKI.


Subject(s)
Acute Kidney Injury , Sirtuins , Animals , Humans , Mice , Acute Kidney Injury/metabolism , Fibrosis , Ketone Bodies , Calponins
10.
Orthop Surg ; 15(10): 2647-2655, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37652712

ABSTRACT

OBJECTIVE: The incidence of severe lower cervical fractures and dislocations due to trauma has increased significantly, and the optimal treatment remains controversial. This study compares the safety and efficacy of anterior cervical discectomy fusion (ACDF) combined with lateral mass screw (LMS) and with cervical pedicle screw (CPS) fixation surgery under O-arm navigation as single-stage treatments of severe lower cervical fracture dislocations. METHODS: Data from 48 patients who underwent ACDF + CPS (Group A) or ACDF + LMS (Group B) for severe lower cervical fracture dislocation between January 2016 and September 2020 were retrospectively reviewed. Groups A and B comprised 25 and 23 cases, respectively. Clinical parameters, such as operative time, intraoperative blood loss, number of fixed segments, posterior incision length, operative complications, and hospitalization days were recorded. Preoperatively and postoperatively, the sub-axial injury classification (SLIC) score, the American Spinal Injury Association (ASIA) impairment scale, and the Japanese Orthopaedic Association (JOA) score were recorded and analyzed using Student's t-test. RESULTS: The SLIC scores were 7.1 ± 1.2 and 7.5 ± 1.1, ASIA were 1.5 ± 0.6 and 1.2 ± 0.6, JOA score improvements were 3.2 ± 2.4 and 3.0 ± 2.1, operative times were 282.1 ± 91.7 and 266.5 ± 88.2 min, intraoperative blood losses were 437.8 ± 118.5 and 418.7 ± 104.2 mL, fixed segments were 2.8 ± 0.7 and 4.8 ± 1.1, and lengths of posterior incisions were 12.7 ± 2.8 and 13.8 ± 3.2 cm in Groups A and B, respectively. There was no significant difference between the two groups in the operative time, intraoperative blood loss, incision length, and postoperative recovery; however, group A had more fixed segments. At the final follow-up, no intraoperative or postoperative complications directly caused by the implant were present. Throughout the follow-up, all cases showed recovery and progressive improvement. CONCLUSION: Both ACDF + LMS and ACDF + CPS under O-arm navigation can safely and effectively restore cervical vertebral sequence, fully release spinal canal compression, and promote patients' neurological recovery. Thus, both are effective treatments for severe lower cervical fracture dislocations. However, compared to LMS, CPS under O-arm navigation has shorter fixed segments and induces less trauma.

11.
Adv Sci (Weinh) ; 10(25): e2300988, 2023 09.
Article in English | MEDLINE | ID: mdl-37400370

ABSTRACT

High levels of reactive oxygen species (ROS) lead to progressive deterioration of mitochondrial function, resulting in tissue degeneration. In this study, ROS accumulation induced nucleus pulposus cells (NPCs) senescence is observed in degenerative human and rat intervertebral disc, suggesting senescence as a new therapeutic target to reverse intervertebral disc degeneration (IVDD). By targeting this, dual-functional greigite nanozyme is successfully constructed, which shows the ability to release abundant polysulfides and presents strong superoxide dismutase and catalase activities, both of which function to scavenge ROS and maintain the tissue at physical redox level. By significantly lowering the ROS level, greigite nanozyme rescues damaged mitochondrial function in IVDD models both in vitro and in vivo, rescues NPCs from senescence and alleviated the inflammatory response. Furthermore, RNA-sequencing reveals ROS-p53-p21 axis is responsible for cellular senescence-induced IVDD. Activation of the axis abolishes greigite nanozyme rescued NPCs senescence phenotype, as well as the alleviated inflammatory response to greigite nanozyme, which confirms the role of ROS-p53-p21 axis in greigite nanozyme's function to reverse IVDD. In conclusion, this study demonstrates that ROS-induced NPCs senescence leads to IVDD and the dual-functional greigite nanozyme holds strong potential to reverse this process, providing a novel strategy for IVDD management.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Humans , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/therapeutic use
12.
Dev Cell ; 58(16): 1489-1501.e5, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37413992

ABSTRACT

How reciprocal regulation of carbon and nitrogen metabolism works is a long-standing question. In plants, glucose and nitrate are proposed to act as signaling molecules, regulating carbon and nitrogen metabolism via largely unknown mechanisms. Here, we show that the MYB-related transcription factor ARE4 coordinates glucose signaling and nitrogen utilization in rice. ARE4 is retained in the cytosol in complexing with the glucose sensor OsHXK7. Upon sensing a glucose signal, ARE4 is released, is translocated into the nucleus, and activates the expression of a subset of high-affinity nitrate transporter genes, thereby boosting nitrate uptake and accumulation. This regulatory scheme displays a diurnal pattern in response to circadian changes of soluble sugars. The are4 mutations compromise in nitrate utilization and plant growth, whereas overexpression of ARE4 increases grain size. We propose that the OsHXK7-ARE4 complex links glucose to the transcriptional regulation of nitrogen utilization, thereby coordinating carbon and nitrogen metabolism.


Subject(s)
Glucose , Oryza , Glucose/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Gene Expression Regulation, Plant
13.
Int J Biol Sci ; 19(11): 3628-3639, 2023.
Article in English | MEDLINE | ID: mdl-37496992

ABSTRACT

11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a key enzyme that transform cortisone to cortisol, which activates the endogenous glucocorticoid function. 11ß-HSD1 has been observed to regulate skeletal metabolism, specifically within osteoblasts. However, the function of 11ß-HSD1 in osteoclasts has not been elucidated. In this study, we observed increased 11ß-HSD1 expression in osteoclasts within an osteoporotic mice model (ovariectomized mice). Then, 11ß-HSD1 global knock-out or knock-in mice were employed to demonstrate its function in manipulating bone metabolism, showing significant bone volume decrease in 11ß-HSD1 knock-in mice. Furthermore, specifically knock out 11ß-HSD1 in osteoclasts, by crossing cathepsin-cre mice with 11ß-HSD1flox/flox mice, presented significant protecting effect of skeleton when they underwent ovariectomy surgery. In vitro experiments showed the endogenous high expression of 11ß-HSD1 lead to osteoclast formation and maturation. Meanwhile, we found 11ß-HSD1 facilitated mature osteoclasts formation inhibited bone formation coupled H type vessel (CD31hiEmcnhi) growth through reduction of PDFG-BB secretion. Finally, transcriptome sequencing of 11ß-HSD1 knock in osteoclast progenitor cells indicated the Hippo pathway1 was mostly enriched. Then, by suppression of YAP expression in Hippo signaling, we observed the redundant of osteoclasts formation even in 11ß-HSD1 high expression conditions. In conclusion, our study demonstrated the role of 11ß-HSD1 in facilitating osteoclasts formation and maturation through the Hippo signaling, which is a new therapeutic target to manage osteoporosis.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Osteoporosis , Mice , Animals , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Osteogenesis/genetics , Hippo Signaling Pathway , Glucocorticoids/pharmacology , Osteoporosis/genetics
14.
Exp Ther Med ; 26(1): 335, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37383374

ABSTRACT

To assess the clinical and radiographic effectiveness of unilateral and bilateral percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCF) associated with scoliosis, 52 patients with OVCF associated with scoliosis who underwent PKP were retrospectively analysed. The patients were divided into the unilateral PKP group (n=26) and the bilateral PKP group (n=26). The operation time, bone cement injection volume and frequency of intraoperative fluoroscopy were recorded and compared between the groups. Additionally, visual analogue scale (VAS) and Oswestry disability index (ODI) scores, as well as postoperative complications, including bone cement leakage and adjacent vertebral fractures, were also assessed. The operation time, bone cement injection volume and intraoperative fluoroscopy frequency were significantly lower in the unilateral compared with the bilateral group (P<0.001). The VAS score, ODI score, average vertebral body height and kyphotic angle (KA) were improved after surgery in each group with no difference in these clinical parameters between the two groups both before and after surgery. Furthermore, the proportion of cases with bone cement leakage in the unilateral group was significantly lower compared with that in the bilateral group (P<0.05). During the follow-up, there were three cases (11.5%) in the unilateral group and two cases (7.7%) in the bilateral group who suffered adjacent vertebral fractures, but there was no statistically significant difference between the two groups (P>0.05). For treating patients with OVCF accompanied by scoliosis, both unilateral and bilateral PKP could effectively relieve the acute back pain and correct the KA. However, unilateral PKP presents more advantages, such as a short operation duration and reduced intraoperative fluoroscopy frequency and bone cement leakage.

15.
Bioact Mater ; 28: 167-182, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37256210

ABSTRACT

Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain. Although local delivery strategies using biomaterial carriers have shown potential for IVDD treatment, it remains challenging for intervention against multiple adverse contributors by a single delivery platform. In the present work, we propose a new functionalization strategy using vanillin, a natural molecule with anti-inflammatory and antioxidant properties, to develop multifunctional gelatin methacrylate (GelMA) microspheres for local delivery of transforming growth factor ß3 (TGFß3) toward IVDD treatment. In vitro, functionalized microspheres not only improved the release kinetics of TGFß3 but also effectively inhibited inflammatory responses and promoted the secretion of extracellular matrix (ECM) in lipopolysaccharide-induced nucleus pulposus (NP) cells. In vivo, functionalized platform plays roles in alleviating inflammation and oxidative stress, preserving the water content of NP and disc height, and maintaining intact structure and biomechanical functions, thereby promoting the regeneration of IVD. High-throughput sequencing suggests that inhibition of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling might be associated with their therapeutic effects. In summary, the vanillin-based functionalization strategy provides a novel and simple way for packaging multiple functions into a single delivery platform and holds promise for tissue regeneration beyond the IVD.

16.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-37205600

ABSTRACT

While circadian rhythms are entrained to the once daily light-dark cycle of the sun, many marine organisms exhibit ~12h ultradian rhythms corresponding to the twice daily movement of the tides. Although human ancestors emerged from circatidal environment millions of years ago, direct evidence of ~12h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells and identified robust ~12h transcriptional rhythms from three healthy participants. Pathway analysis implicated ~12h rhythms in RNA and protein metabolism, with strong homology to the circatidal gene programs previously identified in Cnidarian marine species. We further observed ~12h rhythms of intron retention events of genes involved in MHC class I antigen presentation, synchronized to expression of mRNA splicing genes in all three participants. Gene regulatory network inference revealed XBP1, and GABP and KLF transcription factor family members as potential transcriptional regulators of human ~12h rhythms. These results suggest that human ~12h biological rhythms have a primordial evolutionary origin with important implications for human health and disease.

17.
Bone Rep ; 18: 101671, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37007218

ABSTRACT

Objectives: Alpha-ketoglutarate (αKG) is an essential metabolite that plays a crucial role in skeletal homeostasis. Here we aim to investigate the effect of αKG on alveolar socket healing and reveal the underlying mechanism in the view of macrophage polarization. Methods: In a murine model pretreated with or without αKG, mandibular first molars were extracted. Mandibular tissues were harvested for microCT and histological analyses. Immunofluorescence was used to evaluate macrophage polarization during healing process. Macrophages with αKG/vehicle supplementation in vitro were proceeded to quantitative real-time PCR and flow cytometry to further elucidate the mechanism. Results: MicroCT and histological analyses showed accelerated healing and enhanced bone regeneration of extraction sockets in experimental group. αKG increased new bone volume in alveolar sockets and promoted the activity of both osteoblastogenesis and osteoclastogenesis. αKG administration reduced M1 pro-inflammatory macrophages in an early phase and promoted anti-inflammatory M2 macrophage polarization in a later phase. Consistently, the expressions of M2 marker genes were augmented in αKG group, while M1 marker genes were downregulated. Flow cytometry revealed the increased ratio of M2/M1 macrophages in cells treated with αKG. Conclusions: αKG accelerates the healing process of extraction sockets via orchestrating macrophage activation, with promising therapeutic potential in oral clinics.

18.
Oral Dis ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36794945

ABSTRACT

OBJECTIVE: Recombinant humanized type III collagen (rhCol III) is a highly adhesive biomaterial composed of 16 adhesion-related tandem repeats refined from human type III collagen. Here, we aimed to investigate the effect of rhCol III on oral ulcers and reveal the underlying mechanism. METHODS: Acid-induced oral ulcers were induced on the murine tongue, and rhCol III or saline drops were administered. The effect of rhCol III on oral ulcers was assessed using gross and histological analyses. The effects on the proliferation, migration, and adhesion of human oral keratinocytes were investigated in vitro. The underlying mechanism was explored using RNA sequencing. RESULTS: Administration of rhCol III accelerated the lesion closure of oral ulcers, reduced the release of inflammatory factors, and alleviated pain. rhCol III promoted the proliferation, migration, and adhesion of human oral keratinocytes in vitro. Mechanistically, the enrichment of genes associated with the Notch signaling pathway was upregulated after rhCol III treatment. CONCLUSION: rhCol III promoted the healing of oral ulcers, showing promising therapeutic potential in oral clinics.

19.
ACS Appl Mater Interfaces ; 15(9): 11485-11495, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36821292

ABSTRACT

Osteoporosis is a systemic skeletal disorder characterized by excessive osteoclastic bone resorption and impaired osteoblastic bone formation. Traditional delivery of antiresorptive drugs lacks a specific biodistribution in the body and may cause adverse effects to the patients. In this study, the peptide BTRM is first synthesized consisting of the bone-targeting peptide Asp8 (BT) and the peptide derived from the amino acid sequences of RANK Motif2/3 (RM), two cytoplasmic RANK motifs (PVQEET560-565 and PVQEQG604-609) that have been reported to play an important role in osteoclastogenesis. Then, BTRM is conjugated on the plant virus-like nanoparticles (VNPs) obtained from cowpea chlorotic mottle viruses (CCMVs), forming the engineered plant viruses BTRM-VNPs. In vitro experiments demonstrate that BTRM-VNPs can effectively and safely inhibit osteoclast differentiation and function. Moreover, after injection into ovariectomized mice, BTRM-VNPs show excellent capability to target bone tissue and improve osteoporotic bone loss. Collectively, the findings may provide a novel and promising strategy in the treatment of osteoporotic defects via targeting bone tissue and regulating the function of RANK Motif2/3.


Subject(s)
Bone Resorption , Osteoporosis , Plant Viruses , Mice , Animals , Osteoclasts , Tissue Distribution , Bone and Bones/metabolism , Bone Resorption/complications , Bone Resorption/metabolism , Osteogenesis , Osteoporosis/drug therapy , Osteoporosis/metabolism , Plant Viruses/metabolism , RANK Ligand/metabolism , Cell Differentiation
20.
Mater Today Bio ; 18: 100519, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36590983

ABSTRACT

The periosteum on the skeletal surface creates a unique micro-environment for cortical bone homeostasis, but how this micro-environment is formed remains a mystery. In our study, we observed the cells in the periosteum presented elongated spindle-like morphology within the aligned collagen fibers, which is in accordance with the differentiated osteoblasts lining on the cortical surface. We planted the bone marrow stromal cells(BMSCs), the regular shaped progenitor cells, on collagen-coated aligned fibers, presenting similar cell morphology as observed in the natural periosteum. The aligned collagen topology induced the elongation of BMSCs, whichfacilitated the osteogenic process. Transcriptome analysis suggested the aligned collagen induced the regular shaped cells to present part of the periosteum derived stromal cells(PDSCs) characteristics by showing close correlation of the two cell populations. In addition, the elevated expression of PDSCs markers in the cells grown on the aligned collagen-coated fibers further indicated the function of periosteal topology in manipulating cells' behavior. Enrichment analysis revealed cell-extracellular matrix interaction was the major pathway initiating this process, which created an osteo-friendly micro-environment as well. At last, we found the aligned topology of collagen induced mechano-growth factor expression as the result of Igf1 alternative splicing, guiding the progenitor cells behavior and osteogenic process in the periosteum. This study uncovers the key role of the aligned topology of collagen in the periosteum and explains the mechanism in creating the periosteal micro-environment, which gives the inspiration for artificial periosteum design.

SELECTION OF CITATIONS
SEARCH DETAIL
...