Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Curr Opin Ophthalmol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38814572

ABSTRACT

PURPOSE OF REVIEW: Large language models (LLMs) are rapidly entering the landscape of medicine in areas from patient interaction to clinical decision-making. This review discusses the evolving role of LLMs in ophthalmology, focusing on their current applications and future potential in enhancing ophthalmic care. RECENT FINDINGS: LLMs in ophthalmology have demonstrated potential in improving patient communication and aiding preliminary diagnostics because of their ability to process complex language and generate human-like domain-specific interactions. However, some studies have shown potential for harm and there have been no prospective real-world studies evaluating the safety and efficacy of LLMs in practice. SUMMARY: While current applications are largely theoretical and require rigorous safety testing before implementation, LLMs exhibit promise in augmenting patient care quality and efficiency. Challenges such as data privacy and user acceptance must be overcome before LLMs can be fully integrated into clinical practice.

2.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591083

ABSTRACT

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

3.
Cell Commun Signal ; 22(1): 99, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38317142

ABSTRACT

The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.


Subject(s)
Interleukin-17 , T-Lymphocytes, Regulatory , Humans , Interleukin-10 , Th17 Cells , Inflammation
4.
J Neuroimmunol ; 387: 578281, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38198981

ABSTRACT

BACKGROUND: Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanisms of PGSF on focal ischemia remain unknown; METHODS: In this study, male Sprague Dawley (SD) rats aged 6-8 weeks were initially selected to establish a rat model of middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated; RESULTS: Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1ß and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment inhibited apoptosis, and reduced the levels of ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also disrupted the interaction between NLRP3 and TXNIP in vitro; CONCLUSIONS: Our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.


Subject(s)
Brain Ischemia , Reperfusion Injury , Saponins , Triterpenes , Rats , Animals , Male , NLR Family, Pyrin Domain-Containing 3 Protein , Interleukin-18 , Rats, Sprague-Dawley , Inflammasomes , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Signal Transduction , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Reperfusion Injury/drug therapy , Brain Ischemia/metabolism , Caspase 1/metabolism , Cell Cycle Proteins
6.
J Am Coll Radiol ; 21(7): 988, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38122882
7.
Curr Drug Metab ; 24(10): 709-722, 2023.
Article in English | MEDLINE | ID: mdl-37936469

ABSTRACT

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , PPAR gamma/pharmacology , PPAR gamma/therapeutic use , Arachidonic Acid/pharmacology , Arachidonic Acid/therapeutic use , Biotin/metabolism , Biotin/pharmacology , Biotin/therapeutic use , Signal Transduction , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Riboflavin/metabolism , Riboflavin/pharmacology , Riboflavin/therapeutic use , Diabetes Mellitus/drug therapy
8.
J Diabetes Res ; 2023: 9164883, 2023.
Article in English | MEDLINE | ID: mdl-37840577

ABSTRACT

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Rosa , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tryptophan/pharmacology , Tryptophan/therapeutic use , Signal Transduction , Apoptosis
9.
Appl Environ Microbiol ; 89(10): e0060523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800969

ABSTRACT

The long-read amplicon provides a species-level solution for the community. With the improvement of nanopore flowcells, the accuracy of Oxford Nanopore Technologies (ONT) R10.4.1 has been substantially enhanced, with an average of approximately 99%. To evaluate its effectiveness on amplicons, three types of microbiomes were analyzed by 16S ribosomal RNA (hereinafter referred to as "16S") amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1) in the current study. We showed the error rate, recall, precision, and bias index in the mock sample. The error rate of ONT R10.4.1 was greatly reduced, with a better recall in the case of the synthetic community. Meanwhile, in different types of environmental samples, ONT R10.4.1 analysis resulted in a composition similar to Pacbio data. We found that classification tools and databases influence ONT data. Based on these results, we conclude that the ONT R10.4.1 16S amplicon can also be used for application in environmental samples. IMPORTANCE The long-read amplicon supplies the community with a species-level solution. Due to the high error rate of nanopore sequencing early on, it has not been frequently used in 16S studies. Oxford Nanopore Technologies (ONT) introduced the R10.4.1 flowcell with Q20+ reagent to achieve more than 99% accuracy as sequencing technology advanced. However, there has been no published study on the performance of commercial PromethION sequencers with R10.4.1 flowcells on 16S sequencing or on the impact of accuracy improvement on taxonomy (R9.4.1 to R10.4.1) using 16S ONT data. In this study, three types of microbiomes were investigated by 16S ribosomal RNA (rRNA) amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1). In the mock sample, we displayed the error rate, recall, precision, and bias index. We observed that the error rate in ONT R10.4.1 is significantly lower, especially when deletions are involved. First and foremost, R10.4.1 and Pacific Bioscience platforms reveal a similar microbiome in environmental samples. This study shows that the R10.4.1 full-length 16S rRNA sequences allow for species identification of environmental microbiota.


Subject(s)
Microbiota , Nanopores , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Microbiota/genetics , High-Throughput Nucleotide Sequencing/methods
10.
J Neurointerv Surg ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699704

ABSTRACT

BACKGROUNDS: Recent trials have shown improved outcomes after mechanical thrombectomy (MT) for vertebrobasilar occlusion (VBO) stroke. However, there is a paucity of data regarding safety and outcomes of rescue intracranial stenting (RS) after failed MT (FRRS+) for posterior circulation stroke. We sought to compare RS to failed reperfusion without RS (FRRS-). METHODS: This is a retrospective analysis of the Stenting and Angioplasty in NeuroThrombectomy (SAINT) study, a multicenter collaboration involving prospectively collected databases. Patients were included if they had posterior circulation stroke and failed MT. The cohort was divided into two groups: FRRS+ and FRRS- (defined as modified Thrombolysis In Cerebral Infarction (mTICI) score 0-2a). The primary outcome was a shift in the degree of disability as measured by the modified Rankin Scale (mRS) at 90 days. Secondary outcomes included mRS 0-2 and mRS 0-3 at 90 days. Safety measures included rates of symptomatic intracranial hemorrhage (sICH), procedural complications, and 90-day mortality. Sensitivity and subgroup analyses were performed to identify outcomes in a matched cohort and in those with VBO, respectively. RESULTS: A total of 152 failed thrombectomies were included in the analysis. FRRS+ (n=84) was associated with increased likelihood of lower disability (acOR 2.24, 95% CI 1.04 to 4.95, P=0.04), higher rates of mRS 0-2 (26.8% vs 12.5%, aOR 4.43, 95% CI 1.22 to 16.05, P=0.02) and mRS 0-3 (35.4% vs 18.8%, aOR 3.13, 95% CI 1.08 to 9.10, P=0.036), and lower mortality (42.7% vs 59.4%, aOR 0.40, 95% CI 0.17 to 0.97, P=0.04) at 90 days compared with FRRS- (n=68). The rates of sICH and procedural complications were comparable between the groups. Sensitivity and subgroup analyses showed similar results. CONCLUSION: In patients with posterior circulation stroke who had failed MT, RS resulted in better functional outcomes with comparable safety profile to procedure termination.

11.
Front Endocrinol (Lausanne) ; 14: 1159707, 2023.
Article in English | MEDLINE | ID: mdl-37732114

ABSTRACT

Introduction: Yu-Ye Tang (YYT) is a classical formula widely used in treatment of type 2 diabetes mellitus (T2DM). However, the specific mechanism of YYT in treating T2DM is not clear. Methods: The aim of this study was to investigate the therapeutic effect of YYT on T2DM by establishing a rat model of T2DM. The mechanism of action of YYT was also explored through investigating gut microbiota and serum metabolites. Results: The results indicated YYT had significant therapeutic effects on T2DM. Moreover, YYT could increase the abundance of Lactobacillus, Candidatus_Saccharimonas, UCG-005, Bacteroides and Blautia while decrease the abundance of and Allobaculum and Desulfovibrio in gut microbiota of T2DM rats. Nontargeted metabolomics analysis showed YYT treatment could regulate arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine metabolism, steroid hormone biosynthesis, terpenoid backbone biosynthesis, tryptophan metabolism, and tyrosine metabolism in T2DM rats. Discussion: In conclusion, our research showed that YYT has a wide range of therapeutic effects on T2DM rats, including antioxidative and anti-inflammatory effects. Furthermore, YYT corrected the altered gut microbiota and serum metabolites in T2DM rats. This study suggests that YYT may have a therapeutic impact on T2DM by regulating gut microbiota and modulating tryptophan and glycerophospholipid metabolism, which are potential key pathways in treating T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Rats , RNA, Ribosomal, 16S , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Tryptophan , Metabolomics , Glycerophospholipids
12.
Phytomedicine ; 118: 154937, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37393831

ABSTRACT

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Polygala , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Polygala/genetics , RNA, Ribosomal, 16S , Histidine/metabolism , Histidine/pharmacology , Histidine/therapeutic use , Tryptophan/metabolism , Tryptophan/pharmacology , Tryptophan/therapeutic use , Liver , Feces , Mice, Inbred C57BL
13.
Environ Res ; 235: 116687, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37467942

ABSTRACT

Endophytic bacteria residing within host plants can significantly impact on the host's growth, health, and overall relationship with its surrounding environment. However, the process that shape the community assembly of stem bacterial endophytes (SBEs) remains poorly understood. This study explored the community structure, co-occurrence patterns, and ecological processes of the SBEs inhabiting the shrub host, Mussaenda pubescens, across seven locations in southeastern China. We found that the absolute abundances, alpha diversity, and community composition of SBE communities exhibited notable differences among various host populations. Stem chemical characteristics were the most important factors influencing SBE community distribution, followed by geographic distance and climatic factors. The beta diversity decomposition analyses indicated that SBE community dissimilarities between sites were nearly equally driven by similarity, replacement diversity, and richness difference. The co-occurrence network analysis revealed that the keystone taxa were mostly observed in rare species, which may be essential for preserving the ecosystem's functions. Conditionally abundant taxa (CAT) showcased the highest closeness centrality, while exhibiting the lowest degree centrality and betweenness centrality as opposed to rare taxa. In addition, stochastic processes also played an important role in structuring SBE communities, with ecological drift being the dominant factor for both abundant and rare taxa. This study would deepen our understanding of the ecological dynamics and microbial interactions within plant endophytic microbiomes.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Plants , China
15.
Clin Imaging ; 101: 137-141, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37336169

ABSTRACT

PURPOSE: To evaluate the complexity of diagnostic radiology reports across major imaging modalities and the ability of ChatGPT (Early March 2023 Version, OpenAI, California, USA) to simplify these reports to the 8th grade reading level of the average U.S. adult. METHODS: We randomly sampled 100 radiographs (XR), 100 ultrasound (US), 100 CT, and 100 MRI radiology reports from our institution's database dated between 2022 and 2023 (N = 400). These were processed by ChatGPT using the prompt "Explain this radiology report to a patient in layman's terms in second person: ". Mean report length, Flesch reading ease score (FRES), and Flesch-Kincaid reading level (FKRL) were calculated for each report and ChatGPT output. T-tests were used to determine significance. RESULTS: Mean report length was 164 ± 117 words, FRES was 38.0 ± 11.8, and FKRL was 10.4 ± 1.9. FKRL was significantly higher for CT and MRI than for US and XR. Only 60/400 (15%) had a FKRL <8.5. The mean simplified ChatGPT output length was 103 ± 36 words, FRES was 83.5 ± 5.6, and FKRL was 5.8 ± 1.1. This reflects a mean decrease of 61 words (p < 0.01), increase in FRES of 45.5 (p < 0.01), and decrease in FKRL of 4.6 (p < 0.01). All simplified outputs had FKRL <8.5. DISCUSSION: Our study demonstrates the effective use of ChatGPT when tasked with simplifying radiology reports to below the 8th grade reading level. We report significant improvements in FRES, FKRL, and word count, the last of which requires modality-specific context.


Subject(s)
Comprehension , Radiology , Adult , Humans , Radiography , Magnetic Resonance Imaging , Databases, Factual
16.
Curr Drug Metab ; 24(4): 270-282, 2023.
Article in English | MEDLINE | ID: mdl-37038712

ABSTRACT

BACKGROUND: Polygonatum sibiricum polysaccharide (PSP) can improve insulin resistance and inhibit oxidative stress. However, the detailed anti-diabetic mechanism of PSP is still poorly defined. METHODS: In this study, the anti-diabetic, anti-inflammatory and anti-oxidative effects of PSP were evaluated on a type 2 diabetes mellitus (T2DM) rat model. Furthermore, we investigated the changes in gut microbiota and serum metabolites in T2DM rats after PSP treatment through 16S rRNA sequencing and untargeted metabolomics analyses. RESULTS: Our results showed that PSP exhibited significant anti-diabetic, anti-inflammatory and anti-oxidative effects on T2DM model rats. In addition, 16S rRNA sequencing showed that PSP treatment decreased the Firmicutes/ Bacteroidetes ratio in the gut. At the genus level, PSP treatment increased the relative abundances of Blautia, Adlercreutzia, Akkermansia and Parabacteroides while decreasing Prevotella, Megamonas funiformis and Escherichia. Untargeted metabolomics analysis revealed that PSP treatment could affect 20 metabolites, including hexanoylglycine, (±)5(6)-DiHET, ecgonine, L-cysteine-S-sulfate, epitestosterone, (±)12(13)-DiHOME, glutathione, L-ornithine, Dmannose 6-phosphate, L-fucose, L-tryptophan, L-kynurenine, serotonin, melatonin, 3-hydroxyanthranilic acid, xylitol, UDP-D-glucuronate, hydroxyproline, 4-guanidinobutyric acid, D-proline in T2DM model rats, these metabolites are associated with arginine and proline metabolism, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, pentose and glucuronate interconversions, glutathione metabolism, arginine biosynthesis, ascorbate and aldarate metabolism pathways. Spearman correlation analysis results showed that the modulatory effects of PSP on the arginine and proline metabolism, tryptophan metabolism, and glutathione metabolism pathways were related to the regulation of Prevotella, Megamonas funiformis, Escherichia, Blautia and Adlercreutzia. CONCLUSION: Our research revealed the therapeutic, anti-inflammatory and anti-oxidative effects of PSP on T2DM. The mechanisms of PSP on T2DM are associated with improving the dysbiosis of gut microbiota and regulating arginine and proline metabolism, tryptophan metabolism, and glutathione metabolism in serum.


Subject(s)
Diabetes Mellitus, Type 2 , Polygonatum , Rats , Animals , Diabetes Mellitus, Type 2/drug therapy , RNA, Ribosomal, 16S , Tryptophan , Metabolomics , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Anti-Inflammatory Agents
18.
J Neurointerv Surg ; 15(e2): e240-e247, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36597943

ABSTRACT

BACKGROUND: There is little data available to guide optimal anesthesia management during rescue intracranial angioplasty and stenting (ICAS) for failed mechanical thrombectomy (MT). We sought to compare the procedural safety and functional outcomes of patients undergoing rescue ICAS for failed MT under general anesthesia (GA) vs non-general anesthesia (non-GA). METHODS: We searched the data from the Stenting and Angioplasty In Neuro Thrombectomy (SAINT) study. In our review we included patients if they had anterior circulation large vessel occlusion strokes due to intracranial internal carotid artery (ICA) or middle cerebral artery (MCA-M1/M2) segments, failed MT, and underwent rescue ICAS. The cohort was divided into two groups: GA and non-GA. We used propensity score matching to balance the two groups. The primary outcome was the shift in the degree of disability as measured by the modified Rankin Scale (mRS) at 90 days. Secondary outcomes included functional independence (90-day mRS0-2) and successful reperfusion defined as mTICI2B-3. Safety measures included symptomatic intracranial hemorrhage (sICH) and 90-day mortality. RESULTS: Among 253 patients who underwent rescue ICAS, 156 qualified for the matching analysis at a 1:1 ratio. Baseline demographic and clinical characteristics were balanced between both groups. Non-GA patients had comparable outcomes to GA patients both in terms of the overall degree of disability (mRS ordinal shift; adjusted common odds ratio 1.29, 95% CI [0.69 to 2.43], P=0.43) and rates of functional independence (33.3% vs 28.6%, adjusted odds ratio 1.32, 95% CI [0.51 to 3.41], P=0.56) at 90 days. Likewise, there were no significant differences in rates of successful reperfusion, sICH, procedural complications or 90-day mortality among both groups. CONCLUSIONS: Non-GA seems to be a safe and effective anesthesia strategy for patients undergoing rescue ICAS after failed MT. Larger prospective studies are warranted for more concrete evidence.


Subject(s)
Brain Ischemia , Stroke , Humans , Intention to Treat Analysis , Treatment Outcome , Stroke/surgery , Intracranial Hemorrhages/etiology , Anesthesia, General/adverse effects , Thrombectomy/adverse effects , Brain Ischemia/surgery
19.
F1000Res ; 12: 1417, 2023.
Article in English | MEDLINE | ID: mdl-38434646

ABSTRACT

Background: Percutaneous nephrostomy (PCN) is a commonly performed procedure by interventional radiology and urology to treat urinary obstruction. In this procedure, a catheter is percutaneously placed into the renal pelvis for urinary diversion or hemorrhagic cystitis. Material type, catheter size, and catheter shape (anti-dislodgement feature) ultimately contribute to the inherent traits of longevity in drainage catheter device. Reviewing the relative strengths or weaknesses of products in the existing clinical market may help clinicians critically appraise the devices they use with evidence-based findings from this review. Furthermore, a deeper understanding of the relative strengths and weaknesses of existing devices may help inform the next generation of drainage catheter devices to prolong the interval between exchanges without detriment to patient safety. Methods: The following electronic databases will be queried: PubMed, Web of Science, Cochrane from their inception to January 2023 to identify randomized controlled trials (RCTs) and cohort studies to investigate the differences that our interventions of catheter material, size, and dislodgement mechanism will have on the exchange interval (standard of care 90 days vs. 60 days vs. 45 days vs. 30 days). The primary outcomes will be the drainage catheter exchange frequency. Ethics and dissemination: We aim to share our findings through high-impact peer reviewed journals. As drainage catheters and minimally invasive interventional radiology procedures become more popular, it is important for healthcare providers taking case of these populations to understand which variables might optimize patient care and minimize emergent exchanges. Data will be made available to readers. Registration: PROSPERO ( CRD42023432788, 16 June 2023).


Subject(s)
Cystitis, Hemorrhagic , Nephrostomy, Percutaneous , Humans , Systematic Reviews as Topic , Catheters , Drainage , Review Literature as Topic
20.
J Diabetes Res ; 2022: 2640209, 2022.
Article in English | MEDLINE | ID: mdl-36425593

ABSTRACT

San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic kidney disease (DKD) in clinics. However, the mechanism of SHYS on DKD remains unclear. In this study, we used a high-fat diet combined with streptozocin (STZ) injection to establish a rat model of DKD, and different doses of SHYS were given by oral gavage to determine the therapeutic effects of SHYS on DKD. Then, we studied the effects of SHYS on PINK1/Parkin-mediated mitophagy and the activation of NLRP3 inflammasome to study the possible mechanisms of SHYS on DKD. Our result showed that SHYS could alleviate DKD through reducing the body weight loss, decreasing the levels of fasting blood glucose (FBG), and improving the renal function, insulin resistance (IR), and inhibiting inflammatory response and oxidative stress in the kidney. Moreover, transmission electron microscopy showed SHYS treatment improved the morphology of mitochondria in the kidney. In addition, western blot and immunoflourescence staining showed that SHYS treatment induced the PINK1/Parkin-mediated mitophagy and inhibited the activation of NLRP3 signaling pathway. In conclusion, our study demonstrated the therapeutic effects of SHYS on DKD. Additionally, our results indicated that SHYS promoted PINK1/Parkin-mediated mitophagy and inhibited NLRP3 inflammasome activation to improve mitochondrial injury and inflammatory responses.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Rats , Animals , Mitophagy/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Diabetic Nephropathies/drug therapy , Protein Kinases/metabolism , Protein Kinases/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...