Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360554

ABSTRACT

Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.


Subject(s)
Gene Expression Regulation, Plant , Oryza/anatomy & histology , Phenotype , Plant Leaves/anatomy & histology , Plant Proteins/metabolism , Promoter Regions, Genetic , Oryza/genetics , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Signal Transduction
2.
Plant Biotechnol (Tokyo) ; 35(3): 273-279, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-31819733

ABSTRACT

Recently, two rice genes, OsAPETALA2 (OsAP2) and OsWRKY24 have been reported to be positive regulators involved in increased lamina inclination and grain size through cell elongation. Here, we found that the two genes have tightly linked expression patterns and functional convergence in rice, and are also likely to play an opposite role in Arabidopsis. Overexpression of the two rice transcription factors in Arabidopsis caused smaller plant size with reduced cell size, and the expression of a series of genes encoding expansins and xyloglucan endotransglucosylase/hydrolases (XTHs) involved in cell elongation was reduced. However, transgenic Arabidopsis expressing OsWRKY24-SRDX as a synthetic chimeric repressor displayed indistinguishable phenotypes from wild-type plants. Moreover, the subcellular localization pattern of OsWRKY24 in Arabidopsis was different from that in rice. Thus, we demonstrate an example of transcription factors from one species playing distinct roles in different plant species.

3.
Front Plant Sci ; 8: 1253, 2017.
Article in English | MEDLINE | ID: mdl-28769958

ABSTRACT

Oryza sativa BRASSINOSTEROID UPREGULATED1 LIKE1 (OsBUL1) positively affects lamina inclination and grain size. OsBUL1 knock-out (osbul1) plants as well as transgenic rice with reduced level of OsBUL1 expression produce erect leaves and small grains. Here, we identified a putative downstream gene of OsBUL1, OsBUL1 DOWNSTREAM GENE1 (OsBDG1) encoding a small protein with short leucine-rich-repeats by cDNA microarray analyses in the lamina joint and panicles of wild-type and osbul1 plants. Transgenic rice plants with increased OsBDG1 expression exhibit increased leaf angle and grain size, which is similar to an OsBDG1 activation tagging line whereas double stranded RNA interference (dsRNAi) lines for OsBDG1 knock-down generate erect leaves with smaller grains. Moreover, transgenic rice expressing OsBDG1 under the control of OsBUL1 promoter also shows enlarged leaf bending and grain size phenotypes. Two genes, OsAP2 (OsAPETALA2) and OsWRKY24 were identified as being upregulated transcriptional activators in the lamina joint of pOsBUL1:OsBDG1 plants and induced expression of the two genes driven by OsBUL1 promoter caused increased lamina inclination and grain size in rice. Thus, our work demonstrates that a series of genes showing expression cascades are involved in the promotion of cell elongation in lamina joints and functionally cause increased lamina inclination.

4.
Sci Rep ; 7: 44477, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290557

ABSTRACT

Key flowering genes, FD and FD PARALOGUE (FDP) encoding bZIP transcription factors that interact with a FLOWERING LOCUS T (FT) in Arabidopsis were ectopically expressed in rice since we found AtFD and AtFDP also interact with HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Transgenic rice plants overexpressing AtFD and AtFDP caused reduction in plant height and spikelet size with decreased expression of genes involved in cell elongation without significant flowering time alteration in spite of increased expression of OsMADS14 and OsMADS15, rice homologues of APETALA1 (AP1) in the leaves. Simultaneous overexpression of AtFD and AtFDP enhanced phenotypes seen with overexpression of either single gene while transgenic rice plants expressing AtFD or AtFDP under the control of phloem-specific Hd3a promoter were indistinguishable from wild-type rice. Candidate genes responsible for the phenotypes were identified by comparison of microarray hybridization and their expression pattern was also examined in WT and transgenic rice plants. It has so far not been reported that AtFD and AtFDP affect cell elongation in plants, and our findings provide novel insight into the possible roles of AtFD and AtFDP in the mesophyll cells of plants, and potential genetic tools for manipulation of crop architecture.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Amino Acid Sequence/genetics , Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Ectopic Gene Expression/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Oryza/anatomy & histology , Oryza/growth & development , Phenotype , Photoperiod , Plant Leaves/genetics , Plant Leaves/growth & development , Plants, Genetically Modified/anatomy & histology , Plants, Genetically Modified/growth & development
5.
Bio Protoc ; 7(14): e2409, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-34541139

ABSTRACT

Brassinosteroids (BRs) promote rice lamina inclination. Recently, we showed that OsBUL1 knockout mutant rice (osbul1) is defective in brassinosteroid signaling ( Jang et al., 2017 ). To show that lamina joint inclination of osbul1 is less-sensitive than WT to exogenous brassinolide (BL) treatment in the lamina joint inclination bioassays, we applied the protocol presented below. The protocol focuses on: (1) how to prepare rice samples for the assay, and (2) how to treat BL exogenously. Finally, we have added a result showing lamina inclination between WT and osbul1 in BL solutions of various concentrations.

6.
Plant Physiol ; 173(1): 688-702, 2017 01.
Article in English | MEDLINE | ID: mdl-27879391

ABSTRACT

Rice atypical HLH protein Oryza sativa BRASSINOSTEROID UPREGULATED 1-LIKE1 (OsBUL1) is preferentially expressed in the lamina joint where it controls cell elongation and positively affects leaf angles. OsBUL1 knockout mutant (osbul1) and transgenic rice for double-stranded RNA interference (dsRNAi) of OsBUL1 produced erect leaves with smaller grains, whereas OsBUL1 overexpressors and an activation tagging line of OsBUL1 exhibited increased lamina inclination and grain size. Moreover, OsBUL1 expression was induced by brassinolide (BL) and osbul1 did not respond to BL treatment. To understand the molecular network of OsBUL1 function in rice, we isolated a novel OsBUL1-interacting protein, LO9-177, an uncharacterized protein containing a KxDL motif, and functionally studied it with respect to the lamina inclination and grain size of rice. OsBUL1 COMPLEX1 (OsBC1) is a basic helix-loop-helix (bHLH) transcriptional activator that interacts with OsBUL1 only in the presence of LO9-177 forming a possible trimeric complex for cell elongation in the lamina joint of rice. Expression of OsBC1 is also upregulated by BL and has a similar pattern to that of OsBUL1 Transgenic rice plants expressing OsBC1 under the control of OsBUL1 promoter showed increased grain size as well as leaf bending, while transgenic lines for dsRNAi and/or expressing a dominant repressor form of OsBC1 displayed reduced plant height and grain size. Together, these results demonstrated that a novel protein complex consisting of OsBUL1, LO9-177, and OsBC1 is associated with the HLH-bHLH system, providing new insight into the molecular functional network based on HLH-bHLH proteins for cell elongation.


Subject(s)
Oryza/physiology , Plant Leaves/anatomy & histology , Plant Proteins/metabolism , Seeds/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Gene Knockout Techniques , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Seeds/genetics , Signal Transduction , Steroids, Heterocyclic/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
7.
PLoS One ; 10(8): e0134987, 2015.
Article in English | MEDLINE | ID: mdl-26317412

ABSTRACT

We show that the key flowering regulators encoded by Phalaenopsis aphrodite FLOWERING LOCUS T1 (PaFT1) and PaFD share high sequence homologies to these from long-day flowering Arabidopsis and short-day flowering rice. Interestingly, PaFT1 is specifically up-regulated during flowering inductive cooling treatment but is not subjected to control by photoperiod in P. aphrodite. Phloem or shoot apex-specific expression of PaFT1 restores the late flowering of Arabidopsis ft mutants. Moreover, PaFT1 can suppress the delayed flowering caused by SHORT VEGATATIVE PHASE (SVP) overexpression as well as an active FRIGIDA (FRI) allele, indicating the functional conservation of flowering regulatory circuit in different plant species. PaFT1 promoter:GUS in Arabidopsis showed similar staining pattern to that of Arabidopsis FT in the leaves and guard cells but different in the shoot apex. A genomic clone or heat shock-inducible expression of PaFT1 is sufficient to the partial complementation of the ft mutants. Remarkably, ectopic PaFT1 expression also triggers precocious heading in rice. To further demonstrate the functional conservation of the flowering regulators, we show that PaFD, a bZIP transcription factor involved in flowering promotion, interacts with PaFT1, and PaFD partially complemented Arabidopsis fd mutants. Transgenic rice expressing PaFD also flowered early with increased expression of rice homologues of APETALA1 (AP1). Consistently, PaFT1 knock-down Phalaenopsis plants generated by virus-induced gene silencing exhibit delayed spiking. These studies suggest functional conservation of FT and FD genes, which may have evolved and integrated into distinct regulatory circuits in monopodial orchids, Arabidopsis and rice that promote flowering under their own inductive conditions.


Subject(s)
Flowers/genetics , Orchidaceae/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Conserved Sequence , DNA, Plant/analysis , Flowers/metabolism , Gene Expression Regulation, Plant , Mutation , Orchidaceae/metabolism , Orchidaceae/physiology , Oryza/genetics , Oryza/physiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...