Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Asia Pac Allergy ; 14(3): 97-102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220569

ABSTRACT

Background: The importance of IL-37 and downstream signal in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) demanding further investigation. Objective: We sought to address the potential importance of the IL-37-IL-1R8 axis in regulating inflammatory response in patients with CRSwNP. Methods: Nasal polyp (NP) tissues and control sinonasal tissues were obtained from adult CRSwNP, chronic rhinosinusitis without nasal polyps patients and healthy control subjects. The mRNA and protein levels of IL-37 and IL-1R8 in nasal tissues were examined by using quantitative PCR, immunohistochemical staining, and immunoblotting. In addition, the regulation of IL-1R8 expression was evaluated in human nasal epithelial cells (HNECs) in the presence of different stimuli. Results: The mRNA and protein levels of IL-37 and IL-1R8 were significantly elevated in nasal polyps compared with that in control tissues. IL-37 and IL-1R8 were mainly distributed in the epithelial layer and lamina propria of tissues. IL-1R8 mRNA level in nasal polys was negatively associated with eosinophil and neutrophil infiltration, as well as endoscopic score and computed tomography score. Moreover, the mRNA expression of IL-1R8 in HNECs was significantly increased by toll-like receptor agonists, but significantly inhibited by proinflammatory cytokines, which can be rescued by using steroid (DEX). Conclusion: Our findings showed that enhanced IL-37-IL-1R8 axis in NP tissues was negatively associated with inflammatory and clinical severity of CRSwNP patients, which could be considered as a future therapeutic target in CRSwNP patients.

2.
Foods ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39200448

ABSTRACT

Liver injury induced by alcohol is a serious global health problem. Several tea-like plants are widely used as beverages, which are drunk like tea. In this study, the hepatoprotective effects of eight tea-like plant extracts with the intake of 200 mg/kg.bw/day were investigated and compared using a C57BL/6J mouse model of acute alcohol exposure, including sweet tea, vine tea, Rabdosia serra kudo, broadleaf holly leaf, mulberry leaf, bamboo leaf, Camellia nitidissima, and Akebia trifoliata peels. The results showed that the eight tea-like plants had hepatoprotective effects to different degrees against acute alcohol exposure via enhancing the activities of alcoholic metabolism enzymes, ameliorating oxidative stress and inflammation in the liver, as well as regulating gut microbiota. In particular, sweet tea, bamboo leaf, mulberry leaf, and Camellia nitidissima increased the activities of alcohol dehydrogenase or aldehyde dehydrogenase. Among these tea-like plants, sweet tea and Camellia nitidissima had the greatest hepatoprotective effects, and their bioactive compounds were determined by high-performance liquid chromatography. Chlorogenic acid, rutin, and ellagic acid were identified in sweet tea, and epicatechin, rutin, and ellagic acid were identified in Camellia nitidissima, which could contribute to their hepatoprotective action. These tea-like plants could be drunk or developed into functional food against alcoholic liver injury, especially sweet tea and Camellia nitidissima. In the future, the effects of sweet tea and Camellia nitidissima on chronic alcoholic liver diseases should be further investigated.

3.
Molecules ; 29(16)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39202889

ABSTRACT

Kombucha is a well-known fermented beverage traditionally made from black tea infusion. Recent studies have focused on finding alternative materials to create novel kombucha beverages with various health benefits. In this study, we prepared and evaluated two novel kombucha beverages using Rhodiola rosea and Salvia miltiorrhiza as materials. The effects of fermentation with the residue of these plants on the kombucha were also investigated. The antioxidant activities, total phenolic contents, and concentrations of the bioactive compounds of the kombucha beverages were determined by the Trolox equivalent antioxidant capacity test, ferric-reducing antioxidant power test, Folin-Ciocalteu method, and high-performance liquid chromatography, respectively. The results revealed that the kombucha beverages made with Rhodiola rosea and Salvia miltiorrhiza had strong antioxidant capacities and abundant phenolic contents. Additionally, the kombucha fermented with Rhodiola rosea residue had higher FRAP, TEAC and TPC values than that fermented without residue. On the other hand, the Salvia miltiorrhiza kombucha fermented with residue had similar FRAP and TEAC values but lower TPC values compared to that fermented without residue. The correlation analysis showed that gallic acid, salidroside, and tyrosol were responsible for the antioxidant abilities and total phenolic contents of the Rhodiola rosea kombucha, and salvianolic acid A and salvianolic acid B contributed to the antioxidant abilities of the Salvia miltiorrhiza kombucha. Furthermore, the kombucha fermented with Rhodiola rosea residue had the highest sensory scores among the kombucha beverages studied. These findings suggest that Rhodiola rosea and Salvia miltiorrhiza are suitable for making novel kombucha beverages with strong antioxidant abilities and abundant phenolic contents, which can be used in preventing and managing oxidative stress-related diseases.


Subject(s)
Antioxidants , Fermentation , Phenols , Rhodiola , Salvia miltiorrhiza , Antioxidants/chemistry , Rhodiola/chemistry , Salvia miltiorrhiza/chemistry , Phenols/analysis , Phenols/chemistry , Beverages/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Yeasts/metabolism , Bacteria/drug effects , Phytochemicals/chemistry , Phytochemicals/analysis , Chromatography, High Pressure Liquid
4.
World J Otorhinolaryngol Head Neck Surg ; 10(2): 113-120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855290

ABSTRACT

Objective: This cross-sectional study aimed to determine the epidemiology of olfactory and gustatory dysfunctions related to COVID-19 in China. Methods: This study was conducted by 45 tertiary Grade-A hospitals in China. Online and offline questionnaire data were obtained from patients infected with COVID-19 between December 28, 2022, and February 21, 2023. The collected information included basic demographics, medical history, smoking and drinking history, vaccination history, changes in olfactory and gustatory functions before and after infection, and other postinfection symptoms, as well as the duration and improvement status of olfactory and gustatory disorders. Results: Complete questionnaires were obtained from 35,566 subjects. The overall incidence of olfactory and taste dysfunction was 67.75%. Being female or being a cigarette smoker increased the likelihood of developing olfactory and taste dysfunction. Having received four doses of the vaccine or having good oral health or being a alcohol drinker decreased the risk of such dysfunction. Before infection, the average olfactory and taste VAS scores were 8.41 and 8.51, respectively; after infection, they decreased to 3.69 and 4.29 and recovered to 5.83 and 6.55 by the time of the survey. The median duration of dysosmia and dysgeusia was 15 and 12 days, respectively, with 0.5% of patients having symptoms lasting for more than 28 days. The overall self-reported improvement rate was 59.16%. Recovery was higher in males, never smokers, those who received two or three vaccine doses, and those that had never experienced dental health issues, or chronic accompanying symptoms. Conclusions: The incidence of dysosmia and dysgeusia following infection with the SARS-CoV-2 virus is high in China. Incidence and prognosis are influenced by several factors, including sex, SARS-CoV-2 vaccination, history of head-facial trauma, nasal and oral health status, smoking and drinking history, and the persistence of accompanying symptoms.

5.
Article in Chinese | MEDLINE | ID: mdl-38858107

ABSTRACT

Non-steroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD) is a chronic respiratory disease characterized by eosinophilic inflammation, featuring chronic rhinosinusitis (CRS), asthma, and intolerance to cyclooxygenase 1 (COX-1) inhibitors. The use of these medications can lead to an acute worsening of rhinitis and asthma symptoms. This condition has not yet received sufficient attention in China, with a high rate of misdiagnosis and a lack of related research. The Chinese Rhinology Research Group convened a group of leading young experts in otolaryngology from across the country, based on the latest domestic and international evidence-based medical practices to formulate this consensus.The consensus covers the epidemiology, pathogenesis, clinical manifestations, diagnostic methods, and treatment strategies for N-ERD, including pharmacotherapy, surgery, biologic treatments, and desensitization therapy. The goal is to improve recognition of N-ERD, reduce misdiagnosis, and enhance treatment outcomes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Humans , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , China , Rhinitis/diagnosis , Rhinitis/therapy , Rhinitis/chemically induced , Sinusitis/diagnosis , Sinusitis/therapy , Sinusitis/drug therapy , Consensus , Asthma/diagnosis , Asthma/drug therapy , Chronic Disease
6.
Front Immunol ; 15: 1380846, 2024.
Article in English | MEDLINE | ID: mdl-38756779

ABSTRACT

Background: Although oxidative stress is involved in the pathophysiological process of chronic rhinosinusitis with nasal polyps (CRSwNP), the specific underlying mechanism is still unclear. Whether antioxidant therapy can treat CRSwNP needs further investigation. Methods: Immunohistochemistry, immunofluorescence, western blotting and quantitative polymerase chain reaction (qPCR) analyses were performed to detect the distribution and expression of oxidants and antioxidants in nasal polyp tissues. qPCR revealed correlations between oxidase, antioxidant enzymes and inflammatory cytokine levels in CRSwNP patients. Human nasal epithelial cells (HNEpCs) and primary macrophages were cultured to track the cellular origin of oxidative stress in nasal polyps(NPs) and to determine whether crocin can reduce cellular inflammation by increasing the cellular antioxidant capacity. Results: The expression of NOS2, NOX1, HO-1 and SOD2 was increased in nasal epithelial cells and macrophages derived from nasal polyp tissue. Oxidase levels were positively correlated with those of inflammatory cytokines (IL-5 and IL-6). Conversely, the levels of antioxidant enzymes were negatively correlated with those of IL-13 and IFN-γ. Crocin inhibited M1 and M2 macrophage polarization as well as the expression of NOS2 and NOX1 and improved the antioxidant capacity of M2 macrophages. Moreover, crocin enhanced the ability of antioxidants to reduce inflammation via the KEAP1/NRF2/HO-1 pathway in HNEpCs treated with SEB or LPS. Additionally, we observed the antioxidant and anti-inflammatory effects of crocin in nasal explants. Conclusion: Oxidative stress plays an important role in the development of CRSwNP by promoting various types of inflammation. The oxidative stress of nasal polyps comes from epithelial cells and macrophages. Antioxidant therapy may be a promising strategy for treating CRSwNP.


Subject(s)
Antioxidants , Nasal Polyps , Oxidative Stress , Rhinitis , Sinusitis , Humans , Nasal Polyps/metabolism , Nasal Polyps/immunology , Sinusitis/metabolism , Sinusitis/immunology , Rhinitis/metabolism , Rhinitis/immunology , Chronic Disease , Antioxidants/metabolism , Female , Male , Adult , Middle Aged , Oxidants/metabolism , Macrophages/metabolism , Macrophages/immunology , Cytokines/metabolism , Nasal Mucosa/metabolism , Nasal Mucosa/immunology , Cells, Cultured , Rhinosinusitis
7.
J Control Release ; 368: 691-702, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492860

ABSTRACT

Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Biotin , Drug Delivery Systems/methods , Doxorubicin , Breast Neoplasms/drug therapy , Hypoxia/drug therapy , Cell Line, Tumor , Drug Liberation
8.
Cell Mol Immunol ; 21(6): 533-545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532043

ABSTRACT

The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.


Subject(s)
Chemokines , Immunity, Innate , Intercellular Signaling Peptides and Proteins , Keratinocytes , Receptors, Chemokine , Staphylococcus aureus , Animals , Keratinocytes/immunology , Keratinocytes/metabolism , Staphylococcus aureus/immunology , Chemokines/metabolism , Receptors, Chemokine/metabolism , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Humans , Signal Transduction , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/pathology , Staphylococcal Infections/immunology , Neutrophils/immunology , Neutrophils/metabolism , Skin/immunology , Skin/pathology , Skin/microbiology , Mice, Knockout
9.
Environ Res ; 252(Pt 1): 118453, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38341070

ABSTRACT

Soil contains a substantial amount of organic carbon, and its feedback to global warming has garnered widespread attention due to its potential to modulate atmospheric carbon (C) storage. Temperature sensitivity (Q10) has been widely utilized as a measure of the temperature-induced enhancement in soil organic carbon (SOC) decomposition. It is currently rare to incorporate Q10 of CO2 and CH4 into the study of waterlogged soil profiles and explore the possibility of artificially reducing Q10 in rice fields. To investigate the key drivers of Q10, we collected 0-1 m paddy soil profiles, and stratified the soil for submerged anaerobic incubation. The relationship between SOC availability, microbial activity, and the Q10 of CO2 and CH4 emissions was examined. Our findings indicate that as the soil layer deepens, soil C availability and microbial activity declined, and the Q10 of anaerobic degradation increased. Warming increased C availability and microbial activity, accompanied by weakened temperature sensitivity. The Q10 of CO2 correlated strongly with soil resistant C components, while the Q10 of CH4 was significantly influenced by labile substrates. The temperature sensitivity of CH4 (Q10 = 3.99) was higher than CO2 emissions (Q10 = 1.78), indicating the need for greater attention of CH4 in predicting warming's impact on anaerobic degradation in rice fields. Comprehensively assessing CO2 and CH4 emissions, the 20-40 cm subsurface soil is the most temperature-sensitive. Despite being a high-risk area for C loss and CH4 emissions, management of this soil layer in agriculture has the potential to reduce the threat of global warming. This study underscores the importance of subsurface soil in paddy fields, advocating greater attention in scientific simulations and predictions of climate change.


Subject(s)
Carbon , Methane , Oryza , Soil Microbiology , Soil , Temperature , Soil/chemistry , Carbon/analysis , Carbon/metabolism , Oryza/growth & development , Methane/analysis , Methane/metabolism , Anaerobiosis , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Global Warming
10.
Redox Biol ; 69: 103026, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184996

ABSTRACT

Dementia, with homocysteine (Hcy) as an important risk factor, is a severe public health problem in the aging society. Betaine serves as a methyl donor and plays an important role in reducing Hcy. However, the effects and mechanisms of betaine on Hcy-induced cognitive impairment remain unclear. Firstly, SD rats were injected with Hcy (400 µg/kg) through vena caudalis, and betaine (2.5 % w/v) was supplemented via drinking water for 14 days. Betaine supplementation could attenuate Hcy-induced cognitive impairment in the Y maze and novel object recognition tests by repairing brain injury. Meanwhile, microglial activation was observed to be inhibited by betaine supplementation using immunofluorescence and sholl analysis. Secondly, HMC3 cells were treated with betaine, which was found to decrease the ROS level, ameliorate cell membrane rupture, reduce the release of LDH, IL-18 and IL-1ß, and attenuate the damage of microglia to neurons. Mechanistically, betaine alleviates cognitive impairment by inhibiting microglial pyroptosis via reducing the expressions of NLRP3, ASC, pro-caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-18 and IL-1ß. Betaine treatment can increase SAM/SAH ratio, confirming its enhancement on methylation capacity. Furthermore, betaine treatment was found to enhance N6-methyladenosine (m6A) modification of NLRP3 mRNA, and reduced the NLRP3 mRNA stability through increasing the expression of the m6A reader YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Finally, silencing YTHDF2 could reverse the inhibitory effect of betaine on pyroptosis. Our data demonstrated that betaine attenuated Hcy-induced cognitive impairment by suppressing microglia pyroptosis via inhibiting the NLRP3/caspase-1/GSDMD pathway in an m6A-YTHDF2-dependent manner.


Subject(s)
Betaine , Cognitive Dysfunction , Animals , Rats , Rats, Sprague-Dawley , Betaine/pharmacology , Pyroptosis , Interleukin-18 , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Caspase 1 , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Homocysteine , Interleukin-1beta , Inflammasomes
11.
Food Funct ; 15(4): 1758-1778, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38240135

ABSTRACT

Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.


Subject(s)
Biological Products , Diabetes Mellitus , Humans , Biological Products/pharmacology , Biological Products/therapeutic use , Diabetes Mellitus/drug therapy , Antioxidants/analysis , Vegetables , Fruit/chemistry
12.
Gut ; 73(2): 268-281, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37734910

ABSTRACT

BACKGROUND AND AIMS: Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS: We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS: FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS: FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Animals , Mice , Colitis, Ulcerative/metabolism , RNA, Ribosomal, 16S/metabolism , Intestinal Mucosa/metabolism , Colitis/chemically induced , Colitis/genetics , Colon/metabolism , Sphingolipids/metabolism , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
13.
Article in English | MEDLINE | ID: mdl-36825650

ABSTRACT

Clinically, skin flap transplantation was often used to repair skin wounds. However, the flap design process with sample cloth is rough and easy to cause infection and necrosis. So an accurate and individual shape design of preoperative flap should be solved. Therefore, a 3D wound flattening method for mapping skin mechanical properties based on finite element method was proposed. Firstly, the 3D point cloud of skin wound was obtained by 3D scanner, and the hierarchical structure of wound model was established. Then a geometric flattening method of wound surface was proposed based on the existing surface flattening theory. The concept of deformed point was introduced according to the special shape of wound surface, and the corresponding modification was given to the original flattening process. Secondly, the mechanical properties of pig skin samples with different orientations were measured by static tensile test. Finally, based on the morphological flattening of wound model and the mechanical parameters of pig skin, a unit material model based on material deformation energy was established. The unit deformation was attributed to the equivalent load acting on the node, and a finite element optimization method of wound unfolding shape based on material deformation energy was proposed. In order to optimize the overall deformation energy, the flap shape was optimized and adjusted to achieve the preoperative design. Clinical examples were selected for verification and analysis. The results show that the proposed method can provide a reasonable and reliable preliminary guide for preoperative flap shape design in clinical wound repair.


Subject(s)
Skin , Surgical Flaps , Animals , Swine , Finite Element Analysis , Stress, Mechanical , Biomechanical Phenomena
14.
J Dairy Sci ; 107(5): 2573-2585, 2024 May.
Article in English | MEDLINE | ID: mdl-37977446

ABSTRACT

Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of ß-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. ß-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of ß-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high ß-/αs-casein ratio and protective proteins, in addition to the absence of ß-lactoglobulin.

15.
Article in English | MEDLINE | ID: mdl-38059146

ABSTRACT

Objective: To analyze the oxidative stress status and its association with tissue neutrophilia and oral steroid response in chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Methods: The levels of total oxidant status (TOS) were detected in the sinonasal tissues by using specific assay kits. Tissue neutrophil was examined by immunohistochemical staining, and oxidant status index (OSI) was evaluated in polyps tissues, and the messenger RNA (mRNA) levels of superoxide dismutase 2 (SOD2), aldehyde dehydrogenase 1 (ALDH1A1), and microsomal glutathione S-transferase 1 (MGST1) were examined using quantitative real-time polymerase chain reaction in the sinonasal tissues. The receiver operating characteristics (ROCs) curve of ALDH1A1, MGST1, and SOD2 mRNA levels were evaluated to determine the steroid response of CRSwNP patients. Results: The levels of TOS and OSI were significantly higher in CRSwNP and CRSsNP than in normal controls, and OSI in polyps tissues was positively associated with tissue neutrophilia and poor steroid response. The ALDH1A1, MGST1, and SOD2 mRNA levels showed comparable accuracy as predictors of poor steroid response indicated by the area under the curve. Conclusion: These findings provided evidence that the increased level of oxidative stress contributes to enhanced tissue neutrophilia and poor steroid response in CRSwNP patients.

16.
Article in English | MEDLINE | ID: mdl-37865925

ABSTRACT

Skin flap transplantation is the most commonly used method to repair tissue defect and cover the wound. In clinic, finite element method is often used to design the pre-operation scheme of flap suture. However, the material parameters of skin flap are uncertain due to experimental errors and differences in body parts. How to consider the influence of material parameter uncertainty on the mechanical response of flap suture in the finite element modeling is an urgent problem to be solved at present. Therefore, the influence of material parameter uncertainty propagation in skin flap suture simulation was studied, Firstly, the geometric model of clinical patient's hand wound was constructed by using reverse modeling technology, the patient's three-dimensional wound was unfolded into a flat surface by using curved surface expansion method, yielding a preliminary design contour for the patient's transplant flap. Based on the acquired patient wound geometry model, the finite element model of flap suture with different fiber orientations and different sizes was constructed in Abaqus, and the uncertainty propagation analysis method based on Monte Carlo simulation combined with surrogate model technology was further used to analyze the stress response of flap suture considering the uncertainty of material parameters. Results showed that the overall stress value was relatively lower when the average fiber orientation was 45°. which could be used as the optimal direction for the flap excision. when the preliminary design contour of the flap was scaled down within 90%, the stress value after flap suturing remained within a safe range.

17.
Nat Commun ; 14(1): 5634, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704601

ABSTRACT

The prognosis with pancreatic cancer is among the poorest of any human cancer. One of the important factors is the tumor hypoxia. Targeting tumor hypoxia is considered a desirable therapeutic option. However, it has not been translated into clinical success in the treatment of pancreatic cancer. With enhanced cytotoxicities against hypoxic pancreatic cancer cells, BE-43547A2 (BE) may serve as a promising template for hypoxia target strategy. Here, based on rational modification, a BE prodrug (NMP-BE) is encapsulated into sulfonated azocalix[5]arene (SAC5A) to generate a supramolecular dual hypoxia-responsive complex NMP-BE@SAC5A. Benefited from the selective load release within cancer cells, NMP-BE@SAC5A markedly suppresses tumor growth at low dose in pancreatic cancer cells xenograft murine model without developing systemic toxicity. This research presents a strategy for the modification of covalent compounds to achieve efficient delivery within tumors, a horizon for the realization of safe and reinforced hypoxia target therapy using a simple approach.


Subject(s)
Pancreatic Neoplasms , Humans , Animals , Mice , Pancreatic Neoplasms/drug therapy , Pancreas , Alkanesulfonates , Disease Models, Animal , Hypoxia , Pancreatic Neoplasms
18.
Antioxidants (Basel) ; 12(8)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37627568

ABSTRACT

Kombucha is traditional drink made from the fermentation of a black tea infusion, and is believed to offer a variety of health benefits. Recently, exploring kombucha made from alternative substrates has become a research hotspot. In this paper, two novel kombucha beverages were produced with bamboo leaf or mulberry leaf for the first time. Moreover, the effects of fermentation with leaf residues (infusion plus residues) or without leaf residues (only infusion) on the antioxidant properties of kombucha were compared. The ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, Folin-Ciocalteu method, and high-performance liquid chromatography were utilized to measure the antioxidant capacities, total phenolic contents, as well as some compound concentrations of the kombucha. The results showed that two types of kombucha had high antioxidant capacities. Moreover, kombucha fermented with bamboo leaf residues (infusion plus residues) significantly enhanced its antioxidant capabilities (maximum increase 83.6%), total phenolic content (maximum increase 99.2%), concentrations of some compounds (luteolin-6-C-glucoside and isovitexin), and sensory acceptability, compared to that without residues (only infusion). In addition, fermentation with leaf residues had no significant effect on mulberry leaf kombucha. Overall, the bamboo leaf was more suitable for making kombucha with residues, while the mulberry leaf kombucha was suitable for fermentation with or without residues.

19.
Foods ; 12(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628009

ABSTRACT

Kombucha is a fermented tea known for its health benefits. In this study, golden-flower tea (Camellia petelotii) and honeysuckle-flower tea (Lonicera japonica) were first used as raw materials to prepare kombucha beverages. The antioxidant activities, total phenolic contents, concentrations of bioactive components, and sensory scores of two kombucha beverages were assessed. Additionally, effects of fermentation with or without tea residues on kombucha beverages were compared. The results found that two kombucha beverages possessed strong antioxidant activities and high scores of sensory analysis. In addition, fermentation with golden-flower tea residues could remarkably enhance the antioxidant activity (maximum 2.83 times) and total phenolic contents (3.48 times), while fermentation with honeysuckle tea residues had a minor effect. Furthermore, concentrations of several bioactive compounds could be increased by fermentation with golden-flower tea residues, but fermentation with honeysuckle-flower tea residues had limited effects. Moreover, the fermentation with or without tea residues showed no significant difference on sensory scores of golden-flower tea kombucha and honeysuckle-flower tea kombucha, and golden-flower tea kombucha had higher sensory scores than honeysuckle-flower tea kombucha. Therefore, it might be a better strategy to produce golden-flower tea kombucha by fermentation with tea residues, while honeysuckle-flower tea kombucha could be prepared without tea residues.

20.
Nutrients ; 15(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37513676

ABSTRACT

The number of individuals experiencing mental disorders (e.g., anxiety and depression) has significantly risen in recent years. Therefore, it is essential to seek prevention and treatment strategies for mental disorders. Several gut microbiota, especially Firmicutes and Bacteroidetes, are demonstrated to affect mental health through microbiota-gut-brain axis, and the gut microbiota dysbiosis can be related to mental disorders, such as anxiety, depression, and other mental disorders. On the other hand, dietary components, including probiotics (e.g., Lactobacillus and Bifidobacterium), prebiotics (e.g., dietary fiber and alpha-lactalbumin), synbiotics, postbiotics (e.g., short-chain fatty acids), dairy products, spices (e.g., Zanthoxylum bungeanum, curcumin, and capsaicin), fruits, vegetables, medicinal herbs, and so on, could exert protective effects against mental disorders by enhancing beneficial gut microbiota while suppressing harmful ones. In this paper, the mental disorder-associated gut microbiota are summarized. In addition, the protective effects of dietary components on mental health through targeting the gut microbiota are discussed. This paper can be helpful to develop some dietary natural products into pharmaceuticals and functional foods to prevent and treat mental disorders.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Humans , Anxiety/prevention & control , Depression/prevention & control , Mental Disorders/prevention & control , Prebiotics , Probiotics , Synbiotics , Biological Products
SELECTION OF CITATIONS
SEARCH DETAIL