Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Science ; 384(6698): 885-890, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781365

ABSTRACT

Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.


Subject(s)
Contraception , Contraceptive Agents, Male , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Small Molecule Libraries , Animals , Humans , Male , Mice , Blood-Testis Barrier/metabolism , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Testis/drug effects , Contraception/methods , Structure-Activity Relationship
2.
Hum Reprod ; 39(2): 310-325, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38011909

ABSTRACT

STUDY QUESTION: What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER: The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY: Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION: Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE: The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 µM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA: The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION: The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS: This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Semen Preservation , Semen , Male , Humans , Reactive Oxygen Species/metabolism , Semen/metabolism , Sperm Motility , Hydrogen Peroxide , Proteomics , Tandem Mass Spectrometry , Spermatozoa/metabolism , Oxidative Stress , Cryopreservation/methods , Semen Preservation/adverse effects , Semen Preservation/methods , Necrosis/metabolism
3.
Commun Chem ; 6(1): 164, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542196

ABSTRACT

The development of SARS-CoV-2 main protease (Mpro) inhibitors for the treatment of COVID-19 has mostly benefitted from X-ray structures and preexisting knowledge of inhibitors; however, an efficient method to generate Mpro inhibitors, which circumvents such information would be advantageous. As an alternative approach, we show here that DNA-encoded chemistry technology (DEC-Tec) can be used to discover inhibitors of Mpro. An affinity selection of a 4-billion-membered DNA-encoded chemical library (DECL) using Mpro as bait produces novel non-covalent and non-peptide-based small molecule inhibitors of Mpro with low nanomolar Ki values. Furthermore, these compounds demonstrate efficacy against mutant forms of Mpro that have shown resistance to the standard-of-care drug nirmatrelvir. Overall, this work demonstrates that DEC-Tec can efficiently generate novel and potent inhibitors without preliminary chemical or structural information.

4.
J Med Chem ; 66(3): 2143-2160, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36719862

ABSTRACT

The discovery of monokinase-selective inhibitors for patients is challenging because the 500+ kinases encoded by the human genome share highly conserved catalytic domains. Until now, no selective inhibitors unique for a single transforming growth factor ß (TGFß) family transmembrane receptor kinase, including bone morphogenetic protein receptor type 2 (BMPR2), have been reported. This dearth of receptor-specific kinase inhibitors hinders therapeutic options for skeletal defects and cancer as a result of an overactivated BMP signaling pathway. By screening 4.17 billion "unbiased" and "kinase-biased" DNA-encoded chemical library molecules, we identified hits CDD-1115 and CDD-1431, respectively, that were low-nanomolar selective kinase inhibitors of BMPR2. Structure-activity relationship studies addressed metabolic lability and high-molecular-weight issues, resulting in potent and BMPR2-selective inhibitor analogs CDD-1281 (IC50 = 1.2 nM) and CDD-1653 (IC50 = 2.8 nM), respectively. Our work demonstrates that DNA-encoded chemistry technology (DEC-Tec) is reliable for identifying novel first-in-class, highly potent, and selective kinase inhibitors.


Subject(s)
DNA , Signal Transduction , Humans , Gene Library , Bone Morphogenetic Protein Receptors, Type II/chemistry , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism
5.
Andrology ; 11(5): 808-815, 2023 07.
Article in English | MEDLINE | ID: mdl-36209044

ABSTRACT

BACKGROUND: A safe, effective, and reversible nonhormonal male contraceptive drug is greatly needed for male contraception as well as for circumventing the side effects of female hormonal contraceptives. Phosducin-like 2 (PDCL2) is a testis-specific phosphoprotein in mice and humans. We recently found that male PDCL2 knockout mice are sterile due to globozoospermia caused by impaired sperm head formation, indicating that PDCL2 is a potential target for male contraception. Herein, our study for the first time developed a biophysical assay for PDCL2 allowing us to screen a series of small molecules, to study structure-activity relationships, and to discover two PDCL2 binders with novel chemical structure. OBJECTIVE: To identify a PDCL2 ligand for therapeutic male contraception, we performed DNA-encoded chemical library (DECL) screening and off-DNA hit validation using a unique affinity selection mass spectrometry (ASMS) biophysical profiling strategy. MATERIALS AND METHODS: We employed the screening process of DECL, which contains billions of chemically unique DNA-barcoded compounds generated through individual sequences of reactions and different combinations of functionalized building blocks. The structures of the PDCL2 binders are proposed based on the sequencing analysis of the DNA barcode attached to each individual DECL compound. The proposed structure is synthesized through multistep reactions. To confirm and determine binding affinity between the DECL identified molecules and PDCL2, we developed an ASMS assay that incorporates liquid chromatography with tandem mass spectrometry (LC-MS/MS). RESULTS: After a screening process of PDCL2 with DECLs containing >440 billion compounds, we identified a series of hits. The selected compounds were synthesized as off-DNA small molecules, characterized by spectroscopy data, and subjected to our ASMS/LC-MS/MS binding assay. By this assay, we discovered two novel compounds, which showed good binding affinity for PDCL2 in comparison to other molecules generated in our laboratory and which were further confirmed by a thermal shift assay. DISCUSSION AND CONCLUSION AND RELEVANCE: With the ASMS/LC-MS/MS assay developed in this paper, we successfully discovered a PDCL2 ligand that warrants further development as a male contraceptive.


Subject(s)
DNA , Small Molecule Libraries , Humans , Male , Female , Animals , Mice , DNA/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Drug Discovery , Ligands , Chromatography, Liquid , Tandem Mass Spectrometry , Semen/metabolism
6.
Nat Chem Biol ; 18(11): 1196-1203, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35982227

ABSTRACT

Adhesion G protein-coupled receptors are elusive in terms of their structural information and ligands. Here, we solved the cryogenic-electron microscopy (cryo-EM) structure of apo-ADGRG2, an essential membrane receptor for maintaining male fertility, in complex with a Gs trimer. Whereas the formations of two kinks were determinants of the active state, identification of a potential ligand-binding pocket in ADGRG2 facilitated the screening and identification of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate and deoxycorticosterone as potential ligands of ADGRG2. The cryo-EM structures of DHEA-ADGRG2-Gs provided interaction details for DHEA within the seven transmembrane domains of ADGRG2. Collectively, our data provide a structural basis for the activation and signaling of ADGRG2, as well as characterization of steroid hormones as ADGRG2 ligands, which might be used as useful tools for further functional studies of the orphan ADGRG2.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Male , Cryoelectron Microscopy , Dehydroepiandrosterone Sulfate , Desoxycorticosterone , Ligands , Receptors, G-Protein-Coupled/chemistry
7.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34426525

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [Ki] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (Ki = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (Ki = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Drug Discovery/methods , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Animals , COVID-19/virology , Cells, Cultured , Coronavirus 3C Proteases/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Genetic Engineering , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , SARS-CoV-2/metabolism , Structure-Activity Relationship , Virus Replication , COVID-19 Drug Treatment
8.
Molecules ; 26(6)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799473

ABSTRACT

Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize the developing positive charge at the enone ß-position. For the former, the closer the heteroatom is to the enone ß-carbon, the faster the reaction. For the latter, greater resonance stabilization of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved, then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric substrates is presented, and the application of these insights has allowed for reaction conditions that provide improved reactivity with previously problematic substrates.

9.
Res Microbiol ; 171(2): 102-106, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31669369

ABSTRACT

Xanthomonas oryzae pv. oryzicola (Xoc) depends on its type III secretion system (T3SS) to translocate type III secreted effectors (T3SEs), including transcription activator-like effectors (TALEs) and non-transcription activator-like effectors (non-TALEs), into host cells. T3SEs can promote the colonization of Xoc and contribute to virulence by manipulating host cell physiology. We annotated 25 genes encoding non-TALEs in Xoc strain GX01, an isolate from Guangxi in the South China's rice growing region. Through systematic mutagenesis of non-TALEs, we found that xopN, the virulence contribution of which was previously unknown for Xoc, significantly contributes to the virulence of Xoc GX01, as does avrBs2.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Type III Secretion Systems/genetics , Xanthomonas/physiology , Mutation , Virulence/genetics , Xanthomonas/pathogenicity
10.
Bioconjug Chem ; 30(8): 2209-2215, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31329429

ABSTRACT

A strategy for DNA-compatible, palladium-catalyzed hydroxycarbonylation of (hetero)aryl halides on DNA-chemical conjugates has been developed. This method generally provided the corresponding carboxylic acids in moderate to very good conversions for (hetero)aryl iodides and bromides, and in poor to moderate conversions for (hetero)aryl chlorides. These conditions were further validated by application within a DNA-encoded chemical library synthesis and subsequent discovery of enriched features from the library in selection experiments against two protein targets.


Subject(s)
DNA/chemistry , Hydrocarbons, Halogenated/chemistry , Small Molecule Libraries/chemical synthesis , Catalysis , Palladium , Proteins/antagonists & inhibitors
11.
PLoS One ; 14(4): e0215039, 2019.
Article in English | MEDLINE | ID: mdl-30995267

ABSTRACT

The Gram-negative bacterium Xanthomonas oryzae pv. oryzicola (Xoc) is the causal agent of rice bacterial leaf streak (BLS), one of the most destructive diseases of rice (Oryza sativa L.) that is the important staple crop. Xoc can invade host leaves via stomata and wounds and its type three secretion system (T3SS) is pivotal to its pathogenic lifestyle. In this study, using a novel dual RNA-seq approach, we examined transcriptomes of rice and Xoc in samples inoculated with wild type Xoc GX01 and its T3SS defective strain (T3SD), to investigate the global transcriptional changes in both organisms. Compared with T3SD strain, rice inoculated with wild type Xoc GX01 resulted in significant expression changes of a series of plant defence related genes, including ones altered in plant signalling pathway, and downregulated in phenylalanine metabolism, flavonoid and momilactone biosynthesis, suggesting repression of plant defence response and reduction in both callose deposition and phytoalexin accumulation. Also, some known transcription activator-like effector (TALE) targets were induced by Xoc GX01, e.g. OsSultr3;6 which contributes to rice susceptibility. Some cell elongation related genes, including several expansin genes, were induced by GX01 too, suggesting that Xoc may exploit this pathway to weaken cell wall strength, beneficial for bacterial infection. On the other hand, compared with wild type, the T3SD strain transcriptome in planta was characterized by downregulation of ATP, protein and polysaccharide synthesis, and upregulation of antioxidation and detoxification related genes, revealing that T3SD strain faced serious starvation and oxidation stresses in planta without a functional T3SS. In addition, comparative global transcript profiles of Xoc in planta and in medium revealed an upregulation of virulence factor synthesis and secretion in planta in favour of bacterial infection. Collectively, this study provides a comprehensive representation of cross talk between the host and bacterial pathogen, revealing insights into the Xoc-rice pathogenic dynamic and reveals novel strategies exploited by this important pathogen to cause disease.


Subject(s)
Bacterial Proteins/genetics , Host-Pathogen Interactions/genetics , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Virulence Factors/genetics , Xanthomonas/genetics , Bacterial Proteins/metabolism , Disease Resistance/genetics , Oryza/genetics , Plant Proteins/metabolism , RNA-Seq/methods , Virulence Factors/metabolism , Xanthomonas/classification
12.
Bioconjug Chem ; 29(11): 3841-3846, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30339361

ABSTRACT

DNA-encoded chemical libraries (DELs) are a cost-effective technology for the discovery of novel chemical probes and drug candidates. A major limiting factor in assembling productive DELs is the availability of DNA-compatible chemical reactions in aqueous media. In an effort to increase the chemical accessibility and structural diversity of small molecules displayed by DELs, we developed a robust Suzuki-Miyaura reaction protocol that is compatible with the DNA structures. By employing a water-soluble Pd-precatalyst, we developed conditions that allow efficient coupling of DNA-linked aryl halides with a wide variety of boronic acids/esters including heteroaryl boronates.


Subject(s)
Boronic Acids/chemistry , DNA/chemistry , Hydrocarbons, Aromatic/chemistry , Small Molecule Libraries/chemistry , Water/chemistry , Boronic Acids/chemical synthesis , Catalysis , DNA/chemical synthesis , Esters/chemical synthesis , Esters/chemistry , Hydrocarbons, Aromatic/chemical synthesis , Hydrocarbons, Halogenated/chemical synthesis , Hydrocarbons, Halogenated/chemistry , Palladium/chemistry , Small Molecule Libraries/chemical synthesis
13.
Elife ; 72018 02 02.
Article in English | MEDLINE | ID: mdl-29393851

ABSTRACT

Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and ß-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or ß-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that ß-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/ß-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fertility , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , beta-Arrestin 1/genetics
14.
World J Gastroenterol ; 23(15): 2771-2784, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28487615

ABSTRACT

AIM: To identify a panel of biomarkers that can distinguish between non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), and explore molecular mechanism involved in the process of developing NASH from NAFLD. METHODS: Biomarkers may differ during stages of NAFLD. Urine and blood were obtained from non-diabetic subjects with NAFLD and steatosis, with normal liver function (n = 33), from patients with NASH, with abnormal liver function (n = 45), and from healthy age and sex-matched controls (n = 30). Samples were subjected to metabolomic analysis to identify potential non-invasive biomarkers. Differences in urinary metabolic profiles were analyzed using liquid chromatography tandem mass spectrometry with principal component analysis and partial least squares-discriminate analysis. RESULTS: Compared with NAFLD patients, patients with NASH had abnormal liver function and high serum lipid concentrations. Urinary metabonomics found differences in 31 metabolites between these two groups, including differences in nucleic acids and amino acids. Pathway analysis based on overlapping metabolites showed that pathways of energy and amino acid metabolism, as well as the pentose phosphate pathway, were closely associated with pathological processes in NAFLD and NASH. CONCLUSION: These findings suggested that a panel of biomarkers could distinguish between NAFLD and NASH, and could help to determine the molecular mechanism involved in the process of developing NASH from NAFLD. Urinary biomarkers may be diagnostic in these patients and could be used to assess responses to therapeutic interventions.


Subject(s)
Biomarkers/urine , Non-alcoholic Fatty Liver Disease/urine , Adult , Case-Control Studies , Female , Humans , Male , Metabolomics , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis
15.
World J Gastroenterol ; 23(7): 1125-1138, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28275293

ABSTRACT

Yin-Chén-Hao decoction (YCHD) is a traditional Chinese medicine formula composed of capillaris (Artemisia capillaris), gardenia (Gardenia jasminoides), and rhubarb (Rheum rhabarbarum) that is used for the treatment of damp-heat jaundice. In modern clinics, YCHD is mostly used for hepatic diseases. This review summarizes the biological activities of YCHD and its medical applications. The main active compounds of YCHD are chlorogenic acid, rhein, geniposide, emodin, and scoparone. The pharmacological actions of YCHD include inhibition of hepatic steatosis, apoptosis, necrosis, anti-inflammation, and immune regulation. YCHD could be developed as a new therapeutic strategy for the treatment of hepatic diseases.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Liver Diseases/drug therapy , Animals , Anthraquinones/chemistry , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Artemisia/chemistry , Ascites/drug therapy , Chlorogenic Acid/chemistry , Clinical Trials as Topic , Coumarins/chemistry , Emodin/chemistry , Fatty Liver/drug therapy , Gardenia/chemistry , Humans , Iridoids/chemistry , Plant Extracts/therapeutic use , Rheum/chemistry
16.
Asian J Androl ; 19(3): 355-361, 2017.
Article in English | MEDLINE | ID: mdl-26952955

ABSTRACT

HSP110 functions to protect cells, tissues, and organs from noxious conditions. Vasectomy induces apoptosis in the testis; however, little is known about the reason leading to this outcome. The aim of the present study was to evaluate the expression and function of HSP110 in mouse testis after vasectomy. Following bilateral vasectomy, we used fluorescent Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to detect apoptosis, Western blotting and immunohistochemistry to examine HSP110 expression and localization. Serum antisperm antibody (AsAb) and testosterone were measured by Enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay, respectively. Expression of endoplasmic reticulum stress (ERS) sensors and downstream signaling components was measured by Reverse Transcription-Polymerase Chain Reaction (RT-PCR), and the phosphorylation of eIF2α and JNK was detected by Western blotting. Vasectomy induced morphologic changes, increased apoptosis in the testis, increased serum AsAb, and decreased testosterone levels. After vasectomy, ORP150 mRNA level was increased first and then decreased, Bcl-2 was decreased, and the expression of HSPA4l, GRP78, GADD153, PERK, ATF6, IRE-1, XBP-1s, Bax, Bak, and caspases and the phosphorylation of eIF2α and JNK were increased. We present that an ER stress-mediated pathway is activated and involved in apoptosis in the testis after vasectomy. HSPA4l and ORP150 may play important roles in maintaining the normal structure and function of testis.


Subject(s)
HSP110 Heat-Shock Proteins/biosynthesis , Testis/metabolism , Vasectomy , Animals , Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Gene Expression , HSP110 Heat-Shock Proteins/genetics , Male , Mice , Phosphorylation , Polymerase Chain Reaction , Radioimmunoassay , Spermatozoa/immunology , Testis/cytology , Testosterone/metabolism
17.
Org Lett ; 17(5): 1288-91, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25695534

ABSTRACT

Enantio- and diastereodivergent approaches to pyrrolidines are described by using catalyst- and substrate-controlled reaction pathways. A concerted endo-selective [3 + 2]-cycloaddition pathway is developed for the reaction of methyl imino ester, whereas endo-pyrrolidines with an opposite absolute stereochemical outcome are prepared by using the stepwise reaction pathway of tert-butyl imino ester. The development of catalyst- and substrate-controlled stereodivergent approaches highlights the inherent substrate-catalyst interactions in the [3 + 2]-cycloaddition reactions of metalated azomethine ylides.


Subject(s)
Azo Compounds/chemical synthesis , Copper/chemistry , Pyrrolidines/chemical synthesis , Strychnine/analogs & derivatives , Thiosemicarbazones/chemical synthesis , Azo Compounds/chemistry , Catalysis , Molecular Structure , Pyrrolidines/chemistry , Stereoisomerism , Strychnine/chemistry , Thiosemicarbazones/chemistry
18.
PLoS One ; 9(7): e102198, 2014.
Article in English | MEDLINE | ID: mdl-25009980

ABSTRACT

BACKGROUND: Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes. METHODS: We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5-7 × 10(6) differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels. RESULTS: The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature ß cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥ 8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001). CONCLUSIONS: The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.


Subject(s)
Cell Differentiation , Diabetes Mellitus, Experimental/therapy , Embryonic Stem Cells/transplantation , Insulin-Secreting Cells/transplantation , Animals , Blood Glucose , C-Peptide/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans Transplantation , Mice , Mice, Inbred NOD , Pancreas/metabolism , Pancreas/pathology
19.
Biomed Res Int ; 2014: 872139, 2014.
Article in English | MEDLINE | ID: mdl-24963489

ABSTRACT

Glycyrrhizic acid (GA) is a triterpene glycoside found in the roots of licorice plants (Glycyrrhiza glabra). GA is the most important active ingredient in the licorice root, and possesses a wide range of pharmacological and biological activities. GA coupled with glycyrrhetinic acid and 18-beta-glycyrrhetic acid was developed in China or Japan as an anti-inflammatory, antiviral, and antiallergic drug for liver disease. This review summarizes the current biological activities of GA and its medical applications in liver diseases. The pharmacological actions of GA include inhibition of hepatic apoptosis and necrosis; anti-inflammatory and immune regulatory actions; antiviral effects; and antitumor effects. This paper will be a useful reference for physicians and biologists researching GA and will open the door to novel agents in drug discovery and development from Chinese herbs. With additional research, GA may be more widely used in the treatment of liver diseases or other conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Glycyrrhetinic Acid/therapeutic use , Liver Diseases/drug therapy , Anti-Inflammatory Agents/chemistry , China , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Glycyrrhetinic Acid/chemistry , Humans , Japan , Plants, Medicinal/chemistry
20.
Asian J Androl ; 15(6): 824-30, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013621

ABSTRACT

C-type lysozyme genes (Lyzls) belong to the class of lysozymes and are highly expressed in the testis and epididymis. The members Lyzl4 and Spaca3 have been reported to play a role in sperm-egg binding and fertilisation in mice. However, the function of the remaining two mouse c-type lysozyme genes, Lyzl1 and Lyzl6, is still not clear. In the present study, we analysed the tissue expression and androgen-dependent expression of mouse c-type lysozyme genes and the possible contribution of human recombinant LYZL6 (rLYZL6) to immunity. The expression of Lyzls was detected by RT-PCR, Western blots, immunohistochemistry and immunofluorescence. The bacteriolytic activity of rLYZL6 was analysed by a colony-forming assay. In mice, the expression of Lyzl genes was mainly in the testis and epididymis in a developmentally regulated manner and androgen- or testicular factor-regulated manner. Immunodetection revealed the presence of LYZL6 protein in primary spermatocytes and round spermatids of the testis and on the post-acrosomal area and midpiece of mature epididymal spermatozoa. The rLYZL6 protein exhibited antibacterial activity. From the results, Lyzls may play a role in mitochondrial function of spermatozoa and LYZL6 may contribute to the innate immunity of the male genital tract.


Subject(s)
Anti-Bacterial Agents , Muramidase/physiology , Animals , Base Sequence , DNA Primers , Fluorescent Antibody Technique, Indirect , Humans , Mice , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL