Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Environ Manage ; 366: 121787, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981259

ABSTRACT

During rapid urbanization in developing countries, changes in land use and land cover (LULC) can significantly alter urban land surface temperatures (LST), exacerbating the urban heat island (UHI) effect and degrading the outdoor environment. In this study, taking Guangzhou, China, as an example, we used Landsat series satellite data from 1992 to 2022, classified the LULC of the study area by the Support Vector Machine (SVM) method, estimated the LST of the area by the mono-window algorithm, and classified the LST of the study area into five UHI intensity classes based on the normalized values of the LST, and explored the influence of the LULC on the distribution of the UHI intensity. The CA-ANN (cellular automata-artificial neural network) model in QGIS software was employed to forecast the distribution of LULC and UHI intensity in Guangzhou for 2032. The findings reveal a strong correlation between UHI intensity and LULC, with water bodies and vegetation primarily exhibiting low and sub-low temperatures, while urban areas exhibit sub-high and high temperatures. The prediction results show that, according to the current development trend, compared with 1992, the water body and vegetation cover in 2032 will decrease by 46.97% and 34.24%, the building land will increase by 263.71%, and the sub-high and high temperature areas will increase by 127.76% and 375.92%. By analysing the spatial and temporal changes in LULC and its relationship with the distribution of UHI intensity during urbanization, this study assists government administrations and urban planners in devising sensible urban development strategies and implementing effective measures to plan LULC rationally. This approach aims to mitigate the impacts of the urban heat island and foster sustainable urbanization.

2.
Sensors (Basel) ; 24(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000822

ABSTRACT

By applying a high projection rate, the binary defocusing technique can dramatically increase 3D imaging speed. However, existing methods are sensitive to the varied defocusing degree, and have limited depth of field (DoF). To this end, a time-domain Gaussian fitting method is proposed in this paper. The concept of a time-domain Gaussian curve is firstly put forward, and the procedure of determining projector coordinates with a time-domain Gaussian curve is illustrated in detail. The neural network technique is applied to rapidly compute peak positions of time-domain Gaussian curves. Relying on the computing power of the neural network, the proposed method can reduce the computing time greatly. The binary defocusing technique can be combined with the neural network, and fast 3D profilometry with a large depth of field is achieved. Moreover, because the time-domain Gaussian curve is extracted from individual image pixel, it will not deform according to a complex surface, so the proposed method is also suitable for measuring a complex surface. It is demonstrated by the experiment results that our proposed method can extends the system DoF by five times, and both the data acquisition time and computing time can be reduced to less than 35 ms.

3.
ACS Nano ; 18(21): 13696-13713, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751164

ABSTRACT

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.


Subject(s)
Extracellular Vesicles , Fibroblasts , Mesenchymal Stem Cells , Single-Cell Analysis , Umbilical Cord , Wound Healing , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Umbilical Cord/cytology , Umbilical Cord/metabolism , Animals , Mice , Fibroblasts/metabolism , Sequence Analysis, RNA , Cells, Cultured , Cell Movement , Matrix Metalloproteinase 13/metabolism , Fetus
4.
Biodegradation ; 35(5): 551-564, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38530488

ABSTRACT

Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.


Subject(s)
Biodegradation, Environmental , Enterobacter , Fungicides, Industrial , Gene Expression Profiling , Triazoles , Enterobacter/genetics , Enterobacter/metabolism , Enterobacter/isolation & purification , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Triazoles/pharmacology , Transcriptome
5.
Front Plant Sci ; 15: 1324753, 2024.
Article in English | MEDLINE | ID: mdl-38322826

ABSTRACT

Introduction: Soluble solids content (SSC) is a pivotal parameter for assessing tomato quality. Traditional measurement methods are both destructive and time-consuming. Methods: To enhance accuracy and efficiency in SSC assessment, this study employs full transmission visible and near-infrared (Vis-NIR) spectroscopy and multi-point spectral data collection techniques to quantitatively analyze SSC in two tomato varieties ('Provence' and 'Jingcai No.8' tomatoes). Preprocessing of the multi-point spectra is carried out using a weighted averaging approach, aimed at noise reduction, signal-to-noise ratio improvement, and overall data quality enhancement. Taking into account the potential influence of various detection orientations and preprocessing methods on model outcomes, we investigate the combination of partial least squares regression (PLSR) with two orientations (O1 and O2) and two preprocessing techniques (Savitzky-Golay smoothing (SG) and Standard Normal Variate transformation (SNV)) in the development of SSC prediction models. Results: The model achieved the best results in the O2 orientation and SNV pretreatment as follows: 'Provence' tomato (Rp = 0.81, RMSEP = 0.69°Brix) and 'Jingcai No.8' tomatoes (Rp = 0.84, RMSEP = 0.64°Brix). To further optimize the model, characteristic wavelength selection is introduced through Least Angle Regression (LARS) with L1 and L2 regularization. Notably, when λ=0.004, LARS-L1 produces superior results ('Provence' tomato: Rp = 0.95, RMSEP = 0.35°Brix; 'Jingcai No.8' tomato: Rp = 0.96, RMSEP = 0.33°Brix). Discussion: This study underscores the effectiveness of full transmission Vis-NIR spectroscopy in predicting SSC in different tomato varieties, offering a viable method for accurate and swift SSC assessment in tomatoes.

6.
Polymers (Basel) ; 16(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337196

ABSTRACT

The development of polymeric materials for the repair and reinforcement of damaged sites in water has many practical applications, especially in ocean engineering. However, it is difficult to construct an anticorrosion coating in water. In addition, curing kinetics, which are the key to enhance the performance of coatings, seem to hardly be observed and regulated in an underwater condition. Herein, a novel underwater in situ repairing coating was prepared. Meanwhile, electrochemical impedance spectroscopy (EIS) was applied to observe its curing behavior underwater. Adhesion tests showed that the coatings cured underwater had good adhesion to different substrate surfaces and the ideal ratio of curing agent to epoxy resin was 0.6. Long-term anticorrosive tests demonstrated that the coatings had an excellent anti-corrosion performance. The viscosity changes in different curing stages were well reflected by frequency response characteristics from Bode and Nyquist curves by EIS. Two equivalent electrical circuits were selected to simulate the impedance date at the initial and final curing stage. A formula was put forward to evaluate the curing degree during the curing process. Finally, the effects of temperature and the ingredient ratio on the reaction rate and curing degree were also investigated here. This underwater in situ repairing coating may find applications in many offshore engineering structures in marine environments, and the EIS technique has attractive development and application prospects when observing the curing information of thermosetting resin systems under special circumstances.

7.
Sci Rep ; 14(1): 3063, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321129

ABSTRACT

Tennis elbow (lateral epicondylitis) typically responds well to conservative treatment, and few patients require surgical intervention. This study aimed to investigate the influence of lifestyle and clinical factors on the prognosis of tennis elbow. This prospective, multicenter, nested case-control study included patients diagnosed with lateral epicondylitis after excluding other conditions. Patients who required surgery because of inadequate improvement after 6 months of conservative treatment were defined as the case group; the remaining patients constituted the control group. Propensity score matching was performed to eliminate baseline differences. Univariate and multivariate analyses were performed using logistic regression. This study included 265 patients (53 in the case group, 212 in the control group). Multivariate analysis revealed that smoking, alcohol consumption, and frequent physical exercise were independent risk factors for surgical intervention, whereas combined treatment with oral nonsteroidal anti-inflammatory drugs (NSAIDs) and local corticosteroid injections was a protective factor against surgery. Subgroup analysis showed that heavy drinkers had a 3.74-fold higher risk of requiring surgical treatment within 1 year than occasional drinkers. Smoking and alcohol consumption were associated with non-operative treatment failure in patients with lateral epicondylitis. Combining oral NSAIDs and corticosteroid injections is a favorable conservative treatment option.


Subject(s)
Tennis Elbow , Humans , Tennis Elbow/drug therapy , Case-Control Studies , Prospective Studies , Treatment Failure , Adrenal Cortex Hormones/therapeutic use , Life Style , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
8.
Phytopathology ; 114(7): 1533-1541, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38377011

ABSTRACT

Fusarium root rot is usually classified as an extremely destructive soilborne disease. From 2020 to 2021, Fusarium root rot was observed in production areas and seriously affected the yield and quality of Scutellaria baicalensis in Shanxi Province, China. Based on morphological characteristics and combined analysis of the internal transcribed spacer region of ribosomal DNA and translation elongation factor 1-alpha sequences, 68 Fusarium isolates obtained in this work were identified as F. oxysporum (52.94%), F. acuminatum (20.59%), F. solani (16.17%), F. proliferatum (5.88%), F. incarnatum (2.94%), and F. brachygibbosum (1.47%). In the pathogenicity tests, all Fusarium isolates could infect S. baicalensis roots, presenting different pathogenic ability. Among these isolates, F. oxysporum was found to have the highest virulence on S. baicalensis roots, followed by F. acuminatum, F. solani, F. proliferatum, F. brachygibbosum, and F. incarnatum. According to fungicide sensitivity tests, Fusarium isolates were more sensitive to fludioxonil and difenoconazole, followed by carbendazim, thiophanate-methyl, and hymexazol. In brief, this is the first report of Fusarium species (F. oxysporum, F. acuminatum, F. solani, F. proliferatum, F. incarnatum, and F. brachygibbosum) as causal agents of root rot of S. baicalensis in Shanxi Province, China. The fungicide sensitivity results will be helpful for formulating management strategies of S. baicalensis root rot.


Subject(s)
Fungicides, Industrial , Fusarium , Plant Diseases , Plant Roots , Scutellaria baicalensis , Fusarium/genetics , Fusarium/drug effects , Fusarium/pathogenicity , Fusarium/isolation & purification , Fusarium/physiology , Scutellaria baicalensis/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , China , Fungicides, Industrial/pharmacology , Phylogeny , Carbamates/pharmacology , Benzimidazoles
9.
Genes Genomics ; 46(1): 37-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37971619

ABSTRACT

BACKGROUND: Tuberculosis (TB) is an infectious disease caused by infection with Mycobacterium tuberculosis (Mtb), and it remains one of the major threats to human health worldwide. To our knowledge, the polarization of M1/M2 macrophages were critical innate immune cells which play important roles in regulating the immune response during TB progression. OBJECTIVE: We aimed to explore the potential mechanisms of M1/M2 macrophage polarization in TB development. METHODS: THP-1 macrophages were treated with early secreted antigenic target of 6 kDa (ESAT-6) protein for an increasing time. The polarization profiles, apoptosis levels of M1 and M2 macrophages were detected by RT-qPCR, immunofluorescence, Western blot and flow cytometry. RESULTS: ESAT-6 initially promoted the generation of pro-inflammatory M1-polarized macrophages in THP-1 cells within 24 h, which were suppressed by further ESAT-6 treatment at 30-42 h. Interestingly, ESAT-6 continuously promoted M2 polarization of THP-1 cells, thereby maintaining the anti-inflammatory response in a time-dependent manner. In addition, ESAT-6 promoted apoptotic cell death in M1-polarized macrophages, which had little effects on apoptosis of M2-phenotype of macrophages. Then, the potential underlying mechanisms were uncovered, and we verified that ESAT-6 increased the protein levels of TLR4, MyD88 and NF-κB to activate the TLR4/MyD88/NF-κB pathway within 24 h, and this signal pathway was significantly inactivated at 36 h post-treatment. Interestingly, the following experiments confirmed that ESAT-6 TLR4/MyD88/NF-κB pathway-dependently regulated M1/M2 polarization and apoptosis of macrophage in THP-1 cells. CONCLUSION: Our study investigated the detailed effects and mechanisms of M1/M2 macrophages in regulating innate responses during TB development, which provided a new perspective on the development of treatment strategies for this disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Virulence , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tuberculosis/microbiology , Macrophages/metabolism , Apoptosis
10.
J Immunother Cancer ; 11(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38040417

ABSTRACT

BACKGROUND: Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS: Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS: LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION: LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor , Immunotherapy , RNA/metabolism , RNA/therapeutic use , Ubiquitination , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/therapeutic use
11.
Neurocase ; 29(1): 1-5, 2023.
Article in English | MEDLINE | ID: mdl-37963293

ABSTRACT

To study a case of a middle-aged male with a non-tumor-associated Epstein-Barr virus (EBV) infection associated with Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE), to explore the role of EBV in the pathogenesis of anti-NMDARE. The patient was diagnosed with "Anti-NMDARE, EBV infection" by using Cerebrospinal fluid (CSF) autoimmune encephalitis profile, and Metagenomics Next-Generation Sequencing (mNGS) pathogenic microbial assays, we discuss the relationship between EBV and NMDARE by reviewed literature. EBV infection may trigger and enhance anti-NMDARE, and the higher the titer of NMDAR antibody, the more severe the clinical presentation.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Epstein-Barr Virus Infections , Hashimoto Disease , Middle Aged , Humans , Male , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human , Hashimoto Disease/complications
12.
Front Plant Sci ; 14: 1324152, 2023.
Article in English | MEDLINE | ID: mdl-38034568

ABSTRACT

Introduction: Nondestructive detection of thin-skinned fruit bruising is one of the main challenges in the automated grading of post-harvest fruit. The structured-illumination reflectance imaging (SIRI) is an emerging optical technique with the potential for detection of bruises. Methods: This study presented the pioneering application of low-cost visible-LED SIRI for detecting early subcutaneous bruises in 'Korla' pears. Three types of bruising degrees (mild, moderate and severe) and ten sets of spatial frequencies (50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 cycles m-1) were analyzed. By evaluation of contrast index (CI) values, 150 cycles m-1 was determined as the optimal spatial frequency. The sinusoidal pattern images were demodulated to get the DC, AC, and RT images without any stripe information. Based on AC and RT images, texture features were extracted and the LS-SVM, PLS-DA and KNN classification models combined the optimized features were developed for the detection of 'Korla' pears with varying degrees of bruising. Results and discussion: It was found that RT images consistently outperformed AC images regardless of type of model, and LS-SVM model exhibited the highest detection accuracy and stability. Across mild, moderate, severe and mixed bruises, the LS-SVM model with RT images achieved classification accuracies of 98.6%, 98.9%, 98.5%, and 98.8%, respectively. This study showed that visible-LED SIRI technique could effectively detect early bruising of 'Korla' pears, providing a valuable reference for using low-cost visible LED SIRI to detect fruit damage.

13.
Environ Technol ; : 1-12, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946552

ABSTRACT

To improve the homogeneity of heating, the magnetic absorbing material Fe3O4 is considered to use in microwave pyrolysis of oily sludge. Therefore, the effect of Fe3O4 on the microwave pyrolysis of oily sludge is investigated based on gas volatile products. Thermogravimetric mass spectrometry result certifies that Fe3O4 will increase the weight-loss ratio from 13.0% to 14.1%. Also, the characteristic peak intensity of CO in gas products decreases from 5.41 × 10-10 A/g to 1.95 × 10-10 A/g, while H2O increases from 3.57 × 10-10 A/g to 7.32 × 10-10 A/g and CO2 increases from 6.87 × 10-10 A/g to 8.92 × 10-10 A/g. This is caused by the esterification of alcohols and esters and the reduction of Fe3O4 by CO. Based on the decrease in activation energy and enthalpy values of Stage II and IV, it infers that Fe3O4 catalyzes the pyrolysis process of oily sludge to some extent. Similarly, gas chromatography-mass spectrometry results show that Fe3O4 can make the types of gas products increase. Especially, the number of molecular species increases from 5 to 46 under 200-300 °C. Finally, a simple molecular dynamics simulation model is conducted, and the results are in agreement with the experimental results. This study shows that Fe3O4 improves the pyrolysis homogeneity and the pyrolysis efficiency also improves.

14.
Materials (Basel) ; 16(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37297057

ABSTRACT

Municipal solid waste incineration fly ash is classified as hazardous waste because it contains dioxins and a variety of heavy metals. It is not allowed to be directly landfilled without curing pretreatment, but the increasing production of fly ash and scarce land resources has triggered consideration of the rational disposal of fly ash. In this study, solidification treatment and resource utilization were combined, and the detoxified fly ash was used as cement admixture. The effects of thermal treatment in different atmospheres on the physical and chemical properties of fly ash and the effects of fly ash as admixture on cement properties were investigated. The results indicated that the mass of fly ash increased due to the capture of CO2 after thermal treatment in CO2 atmosphere. When the temperature was 500 °C, the weight gain reached the maximum. After thermal treatment (500 °C + 1 h) in air, CO2, and N2 atmospheres, the toxic equivalent quantities of dioxins in fly ash decreased to 17.12 ng TEQ/kg, 0.25 ng TEQ/kg, and 0.14 ng TEQ/kg, and the degradation rates were 69.95%, 99.56%, and 99.75%, respectively. The direct use of fly ash as admixture would increase the water consumption of standard consistency of cement and reduce the fluidity and 28 d strength of mortar. Thermal treatment in three atmospheres could inhibit the negative effect of fly ash, and the inhibition effect of thermal treatment in CO2 atmosphere was the best. The fly ash after thermal treatment in CO2 atmosphere had the possibility of being used as admixture for resource utilization. Because the dioxins in the fly ash were effectively degraded, the prepared cement did not have the risk of heavy metal leaching, and the performance of the cement also met the requirements.

16.
J Sci Food Agric ; 103(13): 6689-6705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37267465

ABSTRACT

BACKGROUND: Bruises caused by mechanical collision during the harvesting and storage and transportation period are difficult to detect using traditional machine vision technologies because there is no obvious difference in appearance between bruised and sound tissues. As a result of its fast and non-destructive characteristics, hyperspectral imaging technology is a potential tool for non-destructive detection of fruit surface defects. RESULTS: In the present study, visible near infrared hyperspectral reflectance images of healthy apples and bruised apples at 6, 12 and 24 h were obtained. To reduce hyperspectral data dimension, optimal wavelength selection algorithms including principal component analysis (PCA) and band ratio methods were utilized to select the effective wavelengths and enhance the contrast between bruised and sound tissues. Then pseudo-color image transformation technology combining with improved watershed segmentation algorithm (IWSA) were employed to recognize the bruise spots. The result obtained showed that band ratio images obtained better detection performance than that of PCA. The G component derived from pseudo-color image of λ 821 - λ 752 / λ 821 + λ 752 followed by IWSA obtained the best segmentation performance for bruise spots. Finally, a multispectral imaging system for the detection of bruised apple was developed to verify the effectiveness of the proposed two-band ratio algorithm, obtaining recognition rates of 93.3%, 92.2% and 92.5% for healthy, bruised and overall apples, respectively. CONCLUSION: The bruise detection algorithm proposed in the present study has potential to detect bruised apple in online practical applications and hyperspectral reflectance imaging offers a useful reference for the detection of surficial defects of fruit. © 2023 Society of Chemical Industry.


Subject(s)
Contusions , Malus , Humans , Hyperspectral Imaging , Fruit , Algorithms
17.
Biosensors (Basel) ; 13(5)2023 May 06.
Article in English | MEDLINE | ID: mdl-37232882

ABSTRACT

Food analysis plays a vital role in ensuring the safety and quality of food products [...].


Subject(s)
Biosensing Techniques , Food Analysis , Technology
18.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1609-1620, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37154326

ABSTRACT

Lamin B1 (LMNB1) is highly expressed in liver cancer tissues, and its influence and mechanism on the proliferation of hepatocellular carcinoma cells were explored by knocking down the expression of the protein. In liver cancer cells, siRNAs were used to knock down LMNB1. Knockdown effects were detected by Western blotting. Changes in telomerase activity were detected by telomeric repeat amplification protocol assay (TRAP) experiments. Telomere length changes were detected by quantitative real-time polymerase chain reaction (qPCR). CCK8, cloning formation, transwell and wound healing were performed to detect changes in its growth, invasion and migration capabilities. The lentiviral system was used to construct HepG2 cells that steadily knocked down LMNB1. Then the changes of telomere length and telomerase activity were detected, and the cell aging status was detected by SA-ß-gal senescence staining. The effects of tumorigenesis were detected by nude mouse subcutaneous tumorigenesis experiments, subsequent histification staining of tumors, SA-ß-gal senescence staining, fluorescence in situ hybridization (FISH) for telomere analysis and other experiments. Finally, the method of biogenesis analysis was used to find the expression of LMNB1 in clinical liver cancer tissues, and its relationship with clinical stages and patient survival. Knockdown of LMNB1 in HepG2 and Hep3B cells significantly reduced telomerase activity, cell proliferation, migration and invasion abilities. Experiments in cells and tumor formation in nude mice had demonstrated that stable knockdown of LMNB1 reduced telomerase activity, shortened telomere length, senesced cells, reduced cell tumorigenicity and KI-67 expression. Bioinformatics analysis showed that LMNB1 was highly expressed in liver cancer tissues and correlated with tumor stage and patient survival. In conclusion, LMNB1 is overexpressed in liver cancer cells, and it is expected to become an indicator for evaluating the clinical prognosis of liver cancer patients and a target for precise treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Telomerase , Animals , Mice , Telomerase/genetics , Telomerase/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Telomere Shortening , In Situ Hybridization, Fluorescence , Mice, Nude , Telomere/metabolism , Telomere/pathology , Carcinogenesis , Lamin Type B
19.
Front Immunol ; 14: 1142088, 2023.
Article in English | MEDLINE | ID: mdl-36999022

ABSTRACT

Introduction: Full-thickness skin wound healing remains a serious undertaking for patients. While stem cell-derived exosomes have been proposed as a potential therapeutic approach, the underlying mechanism of action has yet to be fully elucidated. The current study aimed to investigate the impact of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exosomes) on the single-cell transcriptome of neutrophils and macrophages in the context of wound healing. Methods: Utilizing single-cell RNA sequencing, the transcriptomic diversity of neutrophils and macrophages was analyzed in order to predict the cellular fate of these immune cells under the influence of hucMSC-Exosomes and to identify alterations of ligand-receptor interactions that may influence the wound microenvironment. The validity of the findings obtained from this analysis was subsequently corroborated by immunofluorescence, ELISA, and qRT-PCR. Neutrophil origins were characterized based on RNA velocity profiles. Results: The expression of RETNLG and SLC2A3 was associated with migrating neutrophils, while BCL2A1B was linked to proliferating neutrophils. The hucMSC-Exosomes group exhibited significantly higher levels of M1 macrophages (215 vs 76, p < 0.00001), M2 macrophages (1231 vs 670, p < 0.00001), and neutrophils (930 vs 157, p < 0.00001) when compared to control group. Additionally, it was observed that hucMSC-Exosomes elicit alterations in the differentiation trajectories of macrophages towards more anti-inflammatory phenotypes, concomitant with changes in ligand-receptor interactions, thereby facilitating healing. Discussion: This study has revealed the transcriptomic heterogeneity of neutrophils and macrophages in the context of skin wound repair following hucMSC-Exosomes interventions, providing a deeper understanding of cellular responses to hucMSC-Exosomes, a rising target of wound healing intervention.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Humans , Mice , Animals , Neutrophils , Exosomes/genetics , Exosomes/metabolism , Ligands , Wound Healing/genetics , Mesenchymal Stem Cells/metabolism , Umbilical Cord , Macrophages/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL