Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.797
Filter
1.
ACS Sens ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143674

ABSTRACT

Plasmonic Au-Ag nanostars are excellent surface-enhanced Raman scattering (SERS) probes due to bimetallic coupling and the tip effect. However, the existing preparation methods of AuAg nanostars cannot achieve controlled growth of the Ag layer on the branches of nanostars and so cannot display their SERS to the maximum extent, thus limiting its sensitivity in biosensing. Herein, a novel strategy "PEI (polyethylenimine)-guided Ag deposition method" is proposed for synthesizing AuAg core-shell nanostars (AuAg@Ag NS) with a tunable distribution of the Ag layer from the core to the tip, which offers an avenue for investigating the correlation between SERS efficiency and the extent of spread of the Ag layer. It is found that AuAg@Ag NS with a Ag layer coated the whole branch has the strongest SERS performance because the coupling between the tips and Ag layer is maximized. Meanwhile, as a completely closed core-shell structure, AuAg@Ag NS can confine and anchor 4-ATP inside the Ag layer to avoid an unstable SERS signal. By connecting the aptamer, a reliable internal standard nanoprobe with a SERS enhancement factor (EF) up to 1.86 × 108 is prepared. Okada acid is detected through competitive adsorption of this SERS probes, and the detection limit is 36.6 pM. The results gain fundamental insights into tailoring the nanoparticle morphologies and preparation of internal standard nanoprobes and also provide a promising avenue for marine toxin detection in food safety.

2.
Biol Res ; 57(1): 53, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135103

ABSTRACT

BACKGROUND: As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. METHODS: A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-ß (TGF-ß) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). RESULTS: The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-ß protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-ß pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). CONCLUSIONS: The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve conduction function. However, the simple reprogramming of astrocytes cannot lead to significant improvements in the striding function of the lower limbs.


Subject(s)
Astrocytes , Basic Helix-Loop-Helix Transcription Factors , Disease Models, Animal , Nerve Tissue Proteins , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Astrocytes/physiology , Nerve Tissue Proteins/metabolism , Mice , Nerve Regeneration/physiology , Neurons , Female , Mice, Inbred C57BL , Spinal Cord/metabolism
3.
Aging Cell ; : e14309, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135295

ABSTRACT

Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.

4.
Diabetes Metab J ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39165112

ABSTRACT

Background: Endothelin-1 (ET-1) is an endogenous vasoconstrictor implicated in coronary artery disease (CAD) and diabetes. This study aimed to determine the prognostic value of ET-1 in the patients with stable CAD under different glucose metabolism states. Methods: In this prospective, large-cohort study, we consecutively enrolled 7,947 participants with angiography-diagnosed stable CAD from April 2011 to April 2017. Patients were categorized by baseline glycemic status into three groups (normoglycemia, prediabetes, and diabetes) and further divided into nine groups by circulating ET-1 levels. Patients were followed for the occurrence of cardiovascular events (CVEs), including nonfatal myocardial infarction, stroke, and cardiovascular mortality. Results: Of the 7,947 subjects, 3,352, 1,653, and 2,942 had normoglycemia, prediabetes, and diabetes, respectively. Over a median follow-up of 37.5 months, 381 (5.1%) CVEs occurred. The risk for CVEs was significantly higher in patients with elevated ET-1 levels after adjustment for potential confounders. When patients were categorized by both status of glucose metabolism and plasma ET-1 levels, the high ET-1 levels were associated with higher risk of CVEs in prediabetes (adjusted hazard ratio [HR], 2.089; 95% confidence interval [CI], 1.151 to 3.793) and diabetes (adjusted HR, 2.729; 95% CI, 1.623 to 4.588; both P<0.05). Conclusion: The present study indicated that baseline plasma ET-1 levels were associated with the prognosis in prediabetic and diabetic patients with stable CAD, suggesting that ET-1 may be a valuable predictor in CAD patients with impaired glucose metabolism.

5.
STAR Protoc ; 5(3): 103230, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093704

ABSTRACT

The stop signal is produced in response to negative experiences at the food source and inhibits honey bee (Apis mellifera) waggle dancing. Here, we present a protocol for measuring the effects of an inhibitory signal associated with danger on honey bee dopamine levels. We describe steps for observing honey bee colonies, training them with artificial nectar, and simulating hornet attacks. We then detail procedures for recording waggle dancing and stop signals and measuring brain dopamine levels during different treatments. For complete details on the use and execution of this protocol, please refer to Dong et al.1.

6.
Cell Mol Biol Lett ; 29(1): 106, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095708

ABSTRACT

BACKGROUND: The RNA N6-methyladenosine (m6A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m6A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear. METHODS: Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m6A epitranscriptomic microarray was utilized to the assess m6A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m6A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism. RESULTS: The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m6A levels of SRPK1. Mechanistically, SRPK1's m6A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD. CONCLUSION: It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m6A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.


Subject(s)
Adenocarcinoma of Lung , Adenosine , Glycolysis , Lung Neoplasms , Methyltransferases , Protein Serine-Threonine Kinases , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Glycolysis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Gene Expression Regulation, Neoplastic , Mice , Cell Line, Tumor , Mice, Nude , RNA Splicing/genetics , Thyroid Hormone-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation/genetics
7.
Curr Med Imaging ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39150027

ABSTRACT

BACKGROUND: Chest X-ray image classification for multiple diseases is an important research direction in the field of computer vision and medical image processing. It aims to utilize advanced image processing techniques and deep learning algorithms to automatically analyze and identify X-ray images, determining whether specific pathologies or structural abnormalities exist in the images. OBJECTIVE: We present the MMPDenseNet network designed specifically for chest multi-label disease classification. METHODS: Initially, the network employs the adaptive activation function Meta-ACON to enhance feature representation. Subsequently, the network incorporates a multi-head self-attention mechanism, merging the conventional convolutional neural network with the Transformer, thereby bolstering the ability to extract both local and global features. Ultimately, the network integrates a pyramid squeeze attention module to capture spatial information and enrich the feature space. RESULTS: The concluding experiment yielded an average AUC of 0.898, marking an average accuracy improvement of 0.6% over the baseline model. When compared with the original network, the experimental results highlight that MMPDenseNet considerably elevates the classification accuracy of various chest diseases. CONCLUSION: It can be concluded that the network, thus, holds substantial value for clinical applications.

8.
Sci Total Environ ; 949: 175182, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089373

ABSTRACT

Formaldehyde (HCHO) is an important source for driving tropospheric ozone (O3) formation. This study investigated the combined effects of anthropogenic and biogenic emission on O3 formation in the Guanzhong Basin (GZB), Central China, providing useful information into the mechanisms of O3 formation due to the interaction between anthropogenic and biogenic volatile organic compounds (VOCs). A severe O3 pollution episode in summer of 2017 was simulated using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to examine the impacts of ambient HCHO on ground-level O3. Results showed secondary HCHO dominated ambient levels, peaking in the afternoon (up to 86 %), while primary emissions contributed 14 % on average. This enhanced O3 production by 7.7 % during the morning rush hour and 24.3 % in the afternoon. In addition, HCHO concentration peaked before that of O3, suggesting it plays significant role in O3 formation. Biogenic emission oxidation contributed 3.1 µg m-3 (53.1 %) of HCHO and 5.2 pptv (40.1 %) of hydroperoxyl radicals (HO2) in average urban areas, where the downwind regions of the forests had high nitrogen oxides (NOx) levels and favorable conditions for O3 production (17.3 µg m-3, 20.5 %). In forested regions, sustained isoprene oxidation led to elevated oxidized VOCs including HCHO and acetaldehyde downwind, which practiced further photolysis of O3 formation with anthropogenic NOx in urban areas. Sensitivity experiments recommend controlling industrial and traffic NOx emissions, with regional joint prevention and regulation, which are essential to reduce O3 pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Formaldehyde , Ozone , Volatile Organic Compounds , Formaldehyde/analysis , Air Pollutants/analysis , China , Ozone/analysis , Volatile Organic Compounds/analysis , Forests , Air Pollution/statistics & numerical data
9.
Front Med (Lausanne) ; 11: 1373397, 2024.
Article in English | MEDLINE | ID: mdl-39109224

ABSTRACT

This patient was an elderly patient with abdominal distension and shortness of breath. According to relevant examinations, his condition was initially considered to be related to cirrhosis, but pathological biopsy confirmed the diagnosis of noncirrhotic portal hypertension of unknown etiology. The portal vein pressure was significantly reduced after transjugular intrahepatic portosystemic shunt (TIPS). Nevertheless, the relief of the hydrothorax and ascites was not significant, and the numbness in both lower limbs gradually worsened. POEMS syndrome was ultimately diagnosed following a comprehensive examination. After two courses of bortezomib combined with dexamethasone, the patient died due to a systemic infection. The clinical symptoms of the patient were atypical, as was the presence of portal hypertension, which hindered the diagnosis of POEMS. Due to the patient's advanced age, the diagnosis was delayed, and the prognosis was poor. This case reminds clinicians that POEMS patients can also have portal hypertension as the main manifestation.

10.
ACS Appl Mater Interfaces ; 16(31): 41072-41079, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39046366

ABSTRACT

As the fields of photonics and information technology develop, a lot of novel applications based on VO2 material, such as optoelectronic computing and information encryption, have been developed. While the performance of these devices was not only closely associated with the VO2 phase transition properties but also depended on their dimensional characteristics. In the current study, we conducted the dimension-controlled vanadium dioxide (VO2) film growth, resulting in the epitaxial 2-dimensional (2D) VO2 film and well-distributed 3-dimensional (3D) VO2 crystal film deposition, respectively. It was revealed that, unlike the 2D film, the pronounced localized surface plasmon resonance dominated the near-infrared spectrum across the phase transition for the 3D VO2 film due to the naturally formed meta-surface structure, which showed a transmittance valley in the infrared spectrum after metallization. Based on this distinct infrared spectrum feature in the 3D VO2 film, we proposed an optoelectronic logic gate controlled by the input voltage and the probing Vis/IR light. By detecting the transmittance states of the probing light with different wavelengths, we achieved multistate encoding functions and demonstrated the information encryption application. This new conception device also showed great potential for some other applications such as optoelectronic coupled computing, information encryption, and optical near-field sensing computing.

11.
Nanoscale ; 16(31): 14932-14939, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39046038

ABSTRACT

6'-Sialyllactose (6'-SL), the most abundant sialylated human milk oligosaccharide, has attracted attention for its potential application in supplementary infant formulas. Herein, we report a facile strategy to construct a cascade bioreactor for the enzymatic synthesis of 6'-SL by co-immobilizing an enzymatic module consisting of CMP-sialic acid synthase and α-2,6-sialyltransferase into hierarchically porous MIL-53 (HP-MIL-53). The as-prepared HP-MIL-53 showed high enzyme immobilization capacity, reaching 226 mg g-1. Furthermore, the co-immobilized enzymes exhibited higher initial catalytic efficiency, and thermal, pH and storage stability than the free ones. Finally, the 6'-SL yield remained >80% after 13 cycles of use. We expect that HP-MIL-53 would have potential industrial applications in the enzymatic modular synthesis of 6'-SL and other glycans.


Subject(s)
Enzymes, Immobilized , Sialyltransferases , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Sialyltransferases/metabolism , Porosity , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Oligosaccharides/biosynthesis , N-Acylneuraminate Cytidylyltransferase/metabolism , N-Acylneuraminate Cytidylyltransferase/chemistry , Bioreactors , Milk, Human/chemistry , Milk, Human/metabolism , Lactose/chemistry , Lactose/analogs & derivatives , Lactose/metabolism , Hydrogen-Ion Concentration , beta-D-Galactoside alpha 2-6-Sialyltransferase
12.
J Hazard Mater ; 476: 135071, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996678

ABSTRACT

Toxicity assessments of pollutants often overlook the impact of environmental factors like hypoxia, which can alter chemical toxicity with unexpected consequences. In this study, Mugilogobius chulae, an estuarine fish, was used to investigate the effects of hypoxia (H), aspirin (ASA), and their combination (H_ASA) exposure over 24, 72, and 168 h. We employed RNA-seq analysis, expression of key gene expression profiling, enzymatic activity assays, and histopathological and ultrastructural examinations of liver tissue to explore the effects and mechanisms of ASA-coupled hypoxia exposure in fish. Results showed that glycolysis was inhibited, and lipolysis was enhanced in ASA/H_ASA groups. The PPAR signaling pathway was activated, increasing fatty acid ß-oxidation and lipophagy to mitigate energy crisis. Both ASA and H_ASA exposures induced p53 expression and inhibited the TOR pathway to combat environmental stress. However, a greater energy demand and heightened sensitivity to ASA were observed in H_ASA compared to ASA exposure. Disruptions in energy and detoxification pathways led to increased stress responses, including enhanced antioxidant activities, autophagy, and apoptotic events, as observed in organelle structures. Overall, sub-chronic H_ASA exposure caused liver injury in M. chulae by affecting energy metabolism, antioxidant regulation, and autophagy processes. This study highlights the influence of hypoxia on ASA toxicity in fish, providing valuable insights for ecological risk assessment of NSAIDs.


Subject(s)
Antioxidants , Aspirin , Autophagy , Energy Metabolism , Hypoxia , Liver , Water Pollutants, Chemical , Animals , Autophagy/drug effects , Energy Metabolism/drug effects , Aspirin/toxicity , Water Pollutants, Chemical/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Antioxidants/metabolism , Perciformes/metabolism , Chemical and Drug Induced Liver Injury/metabolism
13.
Article in English | MEDLINE | ID: mdl-39045823

ABSTRACT

OBJECTIVES: To investigate the epidemic patterns of pretreatment drug resistance (PDR) and acquired drug resistance (ADR) in HIV-1 sequences from China. METHODS: HIV-1 pol sequences and associated epidemiological data were collected from the Los Alamos HIV Sequence Database, NCBI, HIV Gene Sequence Database and PubMed. Genotypic resistance and subtypes were identified using the Stanford HIV Drug Resistance Database. RESULTS: A total of 36 263 sequences from ART-naïve individuals and 1548 sequences from ART-experienced individuals with virological failure were evaluated. PDR prevalence was 6.64%, initially decreasing and then increasing to 7.84% (2018-22) due to NNRTI. Pooled ADR prevalence (44.96%) increased, with NNRTI and NRTI aligning with the overall trend. The percentage of multidrug resistance was more than that of single-drug resistance in PDR and especially ADR annually. PDR was most prevalent in Central China followed by Southwest and North. ADR prevalence was highest in North China followed by Northwest and Southwest. In ADR sequences, high-level resistance was more common, especially in NRTI. PDR sequences exhibited low-level or intermediate resistance, especially PI. Drug resistance mutations revealed distinct patterns in PDR and ADR. CRF01_AE, the predominant subtype in China, exhibited the highest proportions among most ART drugs and drug resistance mutations, with a few exceptions where CRF07_BC (prominent in the Northwest), CRF55_01B and CRF08_BC (prominent in the Southwest) showed the highest proportions. CONCLUSIONS: HIV-1 PDR and ADR prevalence in China exhibited diverse epidemiological characteristics, underscoring the importance of ongoing national monitoring of PDR, ADR and subtype; patient education on adherence; and personalized regimens.

14.
Am J Cancer Res ; 14(6): 2921-2933, 2024.
Article in English | MEDLINE | ID: mdl-39005667

ABSTRACT

Double expressor lymphoma (DEL), characterized by high expressions of both MYC and BCL-2, displays poor prognosis after current therapies. The HDAC inhibitor chidamide has been approved for treatment of T cell lymphoma, but its efficacy on B cell lymphoma is unclear. Here, by combining inhibition screening and transcriptomic analyses, we found that the sensitivity of B lymphoma cells to chidamide was positively correlated with the expression levels of MYC. Chidamide treatment reduced MYC protein levels and repressed MYC pathway in B lymphoma cells with high MYC expressions. Ectopic expression of MYC in chidamide-insensitive B lymphoma cells increased their response to chidamide. Thus, we proposed that adding chidamide into R-CHOP (CR-CHOP) might be effective for DEL, and retrospectively analyzed 185 DEL patients treated in West China Hospital. 80% of patients showed response to CR-CHOP treatment. In the median follow-up of 42 months, CR-CHOP significantly improve the survival for DEL patients with R-IPI ≤2. Totally 35 patients underwent autologous stem cell transplantation (ASCT) in remission and demonstrated a trend for better survival. Combining CR-CHOP with ASCT resulted in the most superior PFS and OS above all. For response patients, CR-CHOP reduced relapse with better PFS than R-CHOP-like regimens with or without ASCT. Taken together, our data indicated that chidamide repressed the MYC pathway in B lymphoma and is potentially efficacious to treat DEL.

15.
J Clin Anesth ; 97: 111562, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39047530

ABSTRACT

BACKGROUND: Previous studies have shown that a 0.05 µg/kg/min of norepinephrine infusion in combination with an initial bolus reduces the incidence of spinal hypotension during cesarean delivery. The initial norepinephrine bolus influences the incidence of spinal hypotension during continuous norepinephrine infusion; however, the ideal initial bolus dose for 0.05 µg/kg/min of continuous infusion remains unknown. METHODS: This randomized, controlled, dose-finding study randomly allocated 120 parturients scheduled for elective cesarean delivery to receive initial bolus doses of 0, 0.05, 0.10, and 0.15 µg/kg of norepinephrine, followed by continuous infusion at a rate of 0.05 µg/kg/min. The primary outcome was the dose-response relationship of the initial norepinephrine bolus in preventing the incidence of spinal hypotension. Spinal hypotension was defined as systolic blood pressure (SBP) decreased to <80% of the baseline value or to an absolute value of <90 mmHg from intrathecal injection to delivery, and severe spinal hypotension was defined as SBP decreased to <60% of the baseline value. The secondary outcomes included the incidence of nausea and/or vomiting, hypertension, and bradycardia, as well as the Apgar scores and results of the umbilical arterial blood gas analysis. The effective dose (ED) 90 and ED95 were estimated using probit regression. RESULTS: The per-protocol analysis included 117 patients. The incidence of spinal hypotension varied significantly among the groups: Group 0 (51.7%), Group 0.05 (44.8%), Group 0.10 (23.3%), and Group 0.15 (6.9%). The ED90 and ED95 values were 0.150 µg/kg (95% confidence interval [CI], 0.114-0.241 µg/kg) and 0.187 µg/kg (95% CI, 0.141-0.313 µg/kg), respectively. However, the ED95 value fell outside the dose range examined in this study. The incidence of severe spinal hypotension differed significantly (P = 0.02) among Groups 0 (17.2%), 0.05 (10.3%), 0.10 (3.3%), and 0.15 (0.0%); however, the incidence of hypertension and bradycardia did not. The incidence of nausea and/or vomiting decreased with an increase in the initial bolus dose (P = 0.03). The fetal outcomes were comparable among the groups. CONCLUSIONS: An initial bolus of 0.150 µg/kg of norepinephrine may be the optimal dose for preventing spinal hypotension during cesarean delivery with a continuous infusion rate of 0.05 µg/kg/min, and does not significantly increase the incidence of hypertension but substantially reduces the risk of nausea and/or vomiting.

16.
Front Oncol ; 14: 1406764, 2024.
Article in English | MEDLINE | ID: mdl-39055565

ABSTRACT

Background: Hepatocellular carcinoma (HCC) patients with compensated cirrhosis typically face a high prevalence and unfavorable prognosis. However, there is currently a deficiency in prediction models to anticipate the prognosis of these patients. Therefore, our study included the Gamma-glutamyl transpeptidase-to-platelet ratio (GPR) in analysis and aimed to develop a nomogram for HCC patients with compensated cirrhosis after local ablation. Methods: Enrolling 669 patients who underwent local ablation at Beijing You'an Hospital during the period from January 1, 2014, to December 31, 2022, this study focused on individuals with compensated cirrhotic HCC. In a ratio of 7:3, patients were allocated to the training cohort (n=468) and the validation cohort (n=201). Lasso-Cox regression was employed to identify independent prognostic factors for overall survival (OS). Subsequently, a nomogram was constructed using these factors and was validated through receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results: GPR, age, and hemoglobin were identified by Lasso-Cox regression as independent prognostic factors of the nomogram. The area under the ROC curves (AUCs) for 3-, 5-, and 8-year OS (0.701, 0.755, and 0.768 for the training cohort; 0.684, 0.707, and 0.778 for the validation cohort), and C-indices (0.695 for training cohort; 0.679 for validation cohort) exhibited the excellent predictive ability of the nomogram. Calibration curves and DCA curves indicated favorable calibration performance and clinical utility. Patients were further stratified into two risk groups according to the median nomogram score. There existed an obvious distinction between the two groups both in the training cohort and validation cohort. Conclusion: In summary, this research established and validated a novel nomogram to predict OS, which had good predictive power for HCC patients with compensated cirrhosis after local ablation.

17.
Technol Cancer Res Treat ; 23: 15330338241261616, 2024.
Article in English | MEDLINE | ID: mdl-39051528

ABSTRACT

Objectives: To investigate the effects and the related signaling pathway of miR-362-3p on OS. Methods: The bioinformatics analysis approaches were employed to investigate the target pathway of miR-362-3p. After the 143B and U2OS cells and nu/nu male mice were randomly divided into blank control (BC) group, normal control (NC) group, and overexpression group (OG), the CCK-8, EdU staining, wound healing assay, Transwell assay, and TUNEL staining were adopted to respectively determine the effects of overexpressed miR-362-3p on the cell viability, proliferation, migration, invasion, and apoptosis of 143B and U2OS cells in vitro, tumor area assay and hematoxylin and eosin staining were employed to respectively determine the effects of overexpressed miR-362-3p on the growth and pathological injury of OS tissue in vivo. The qRT-PCR, Western blot, and immunohistochemical staining were applied to respectively investigate the effects of overexpressed miR-362-3p on the IL6ST/JAK2/STAT3 pathway in OS in vivo and in vitro. Results: The bioinformatics analysis approaches combined qRT-PCR indicated that the IL6ST/JAK2/STAT3 is one of the target pathways of miR-362-3p. Compared with NC, the cell viability, proliferation, migration, and invasion of 143B and U2OS cells were dramatically (P < 0.01) inhibited but the apoptosis was prominently (P <0 .0001) promoted in OG. Compared with NC, the growth of OS tissue was significantly (P < 0.05) suppressed and the pathological injury of OS tissue was substantially aggravated in OG. The gene expression levels of IL6ST, JAK2, and STAT3 and the protein expression levels of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 in 143B and U2OS cells were memorably (P < 0.0001) lower in OG than those in NC. In addition, the positively stained areas of proteins of IL6ST, JAK2, p-JAK2, STAT3, and p-STAT3 of OS tissue in OG were markedly (P < 0.01) reduced compared with those in NC. Conclusion: The overexpression of miR362-3p alleviates OS by inhibiting the IL6ST/JAK2/STAT3 pathway in vivo and in vitro.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Janus Kinase 2 , MicroRNAs , Osteosarcoma , STAT3 Transcription Factor , Signal Transduction , MicroRNAs/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Humans , Animals , Mice , Cell Line, Tumor , Cell Movement/genetics , Apoptosis/genetics , Male , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Xenograft Model Antitumor Assays , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/genetics , Computational Biology/methods , Disease Models, Animal , Cell Survival/genetics
18.
J Environ Manage ; 366: 121874, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025014

ABSTRACT

Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.


Subject(s)
Biofuels , Methane , Nitrogen , Steel , Steel/chemistry , Nitrogen/chemistry , Methane/chemistry , Anaerobiosis , Charcoal/chemistry , Carbon/chemistry
19.
Eur J Radiol ; 178: 111619, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024666

ABSTRACT

OBJECTIVES: This study aims to analyze the efficacy of transcatheter arterial chemoembolization (TACE) combined with radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation (CA) in hepatocellular carcinoma (HCC). METHODS: A retrospective analysis was conducted on 632 patients with HCC at Barcelona Clinic Liver Cancer Staging (BCLC) System stages 0, A, and B from Beijing You'an Hospital affiliated with Capital Medical University. The primary outcomes analyzed were overall survival (OS) and progression-free survival (PFS), while the secondary outcomes included one-, three-, and five-year OS rates among different groups. RESULTS: The median follow-up period for 632 cases identified with HCC was 52.1 months (range: 3-162 months), while 127 patients died during follow-up. The one-, three-, and five-year OS rates were 97.1 %, 89.5 %, and 80.4 %, respectively. Moreover, the one-, three-, and five-year PFS rates were 58.1 %, 29.3 %, and 19.8 %, respectively. Multivariate analysis revealed that the BCLC stages and complete ablation were independent predictors of OS and PFS (all p < 0.05). Subgroup analysis showed no difference in OS rate among TACE-RFA, TACE-MWA, and TACE-CA groups, but TACE-CA showed better efficacy in improving the PFS rate (all p < 0.05). CONCLUSIONS: The combination of TACE and ablation is effective in early-stage HCC and BCLC stage B. Complete ablation and BCLC stages are significant prognostic factors for PFS and OS. Further research, including randomized controlled trials, is needed to validate these findings.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Chemoembolization, Therapeutic/methods , Male , Female , Retrospective Studies , Middle Aged , Combined Modality Therapy , Treatment Outcome , Aged , Adult , Survival Rate , Aged, 80 and over , Radiofrequency Ablation/methods , Catheter Ablation/methods
20.
Cytokine Growth Factor Rev ; 78: 37-49, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981775

ABSTRACT

Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.


Subject(s)
Anti-Inflammatory Agents , Nervous System Diseases , Succinates , Humans , Succinates/therapeutic use , Succinates/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Nervous System Diseases/drug therapy , Nervous System Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Signal Transduction/drug effects , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL