Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Front Nutr ; 11: 1385159, 2024.
Article in English | MEDLINE | ID: mdl-38628273

ABSTRACT

Introduction: Functional dyspepsia (FD), also known as non-ulcerative dyspepsia, is a common digestive system disorder. Methods: In this study, an FD model was established using hunger and satiety disorders combined with an intraperitoneal injection of L-arginine. Indices used to evaluate the efficacy of hawthorn in FD mice include small intestinal propulsion rate, gastric residual rate, general condition, food intake, amount of drinking water, gastric histopathological examination, and serum nitric oxide (NO) and gastrin levels. Based on the intestinal flora and their metabolites, short-chain fatty acids (SCFAs), the mechanism of action of Crataegi Fructus (hawthorn) on FD was studied. The fecal microbiota transplantation test was used to verify whether hawthorn altered the structure of the intestinal flora. Results: The results showed that hawthorn improved FD by significantly reducing the gastric residual rate, increasing the intestinal propulsion rate, the intake of food and drinking water, and the levels of gastrointestinal hormones. Simultaneously, hawthorn elevated substance P and 5-hydroxytryptamine expression in the duodenum, reduced serum NO levels, and increased vasoactive intestinal peptide expression in the duodenum. Notably, hawthorn increased the abundance of beneficial bacteria and SCFA-producing bacteria in the intestines of FD mice, decreased the abundance of conditional pathogenic bacteria, and significantly increased the SCFA content in feces. Discussion: The mechanism by which hawthorn improves FD may be related to the regulation of intestinal flora structure and the production of SCFAs.

2.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578721

ABSTRACT

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

3.
Res Sq ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38659817

ABSTRACT

Purpose: Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods: We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results: KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion: Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.

4.
Cell Rep ; 43(4): 113973, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507406

ABSTRACT

We identified and validated a collection of circular RNAs (circRNAs) in Drosophila melanogaster. We show that depletion of the pro-viral circRNA circATP8B(2), but not its linear siblings, compromises viral infection both in cultured Drosophila cells and in vivo. In addition, circATP8B(2) is enriched in the fly gut, and gut-specific depletion of circATP8B(2) attenuates viral replication in an oral infection model. Furthermore, circATP8B(2) depletion results in increased levels of reactive oxygen species (ROS) and enhanced expression of dual oxidase (Duox), which produces ROS. Genetic and pharmacological manipulations of circATP8B(2)-depleted flies that reduce ROS levels rescue the viral replication defects elicited by circATP8B(2) depletion. Mechanistically, circATP8B(2) associates with Duox, and circATP8B(2)-Duox interaction is crucial for circATP8B(2)-mediated modulation of Duox activity. In addition, Gαq, a G protein subunit required for optimal Duox activity, acts downstream of circATP8B(2). We conclude that circATP8B(2) regulates antiviral defense by modulating Duox expression and Duox-dependent ROS production.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , RNA, Circular , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Virus Replication , RNA/metabolism , RNA/genetics , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Dual Oxidases/metabolism , Dual Oxidases/genetics
5.
Sci Rep ; 14(1): 7028, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528062

ABSTRACT

Accurate indel calling plays an important role in precision medicine. A benchmarking indel set is essential for thoroughly evaluating the indel calling performance of bioinformatics pipelines. A reference sample with a set of known-positive variants was developed in the FDA-led Sequencing Quality Control Phase 2 (SEQC2) project, but the known indels in the known-positive set were limited. This project sought to provide an enriched set of known indels that would be more translationally relevant by focusing on additional cancer related regions. A thorough manual review process completed by 42 reviewers, two advisors, and a judging panel of three researchers significantly enriched the known indel set by an additional 516 indels. The extended benchmarking indel set has a large range of variant allele frequencies (VAFs), with 87% of them having a VAF below 20% in reference Sample A. The reference Sample A and the indel set can be used for comprehensive benchmarking of indel calling across a wider range of VAF values in the lower range. Indel length was also variable, but the majority were under 10 base pairs (bps). Most of the indels were within coding regions, with the remainder in the gene regulatory regions. Although high confidence can be derived from the robust study design and meticulous human review, this extensive indel set has not undergone orthogonal validation. The extended benchmarking indel set, along with the indels in the previously published known-positive set, was the truth set used to benchmark indel calling pipelines in a community challenge hosted on the precisionFDA platform. This benchmarking indel set and reference samples can be utilized for a comprehensive evaluation of indel calling pipelines. Additionally, the insights and solutions obtained during the manual review process can aid in improving the performance of these pipelines.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Humans , Computational Biology , Quality Control , INDEL Mutation , Polymorphism, Single Nucleotide
6.
Allergy ; 79(3): 643-655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263798

ABSTRACT

BACKGROUND: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. METHODS: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)). RESULTS: Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. CONCLUSION: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.


Subject(s)
Asthma , Hypersensitivity, Immediate , Adult , Humans , Proteomics/methods , Asthma/metabolism , Biomarkers , Phenotype , Blood Proteins/genetics
7.
Neurotherapeutics ; 21(2): e00317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266580

ABSTRACT

Pink1 (PTEN-induced putative kinase 1) is a protein associated with maintaining mitochondrial function and integrity and has been reported to mediate neurodegeneration and neuroinflammation. While the role of Pink1 in intracerebral hemorrhage (ICH)-related neurological deficits and inflammatory responses is not deciphered. Congenic blood was transfused into the left corpus striatum to construct the ICH model in C57/BL6 wild-type (WT) and Pink1-/- mice. The relative expression of Pink1, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, Cd86, nitric oxide synthase 2 (Nos2), Cd206, arginase 1 (Arg-1), and IL-10 was detected with qRT-PCR, Western blotting, or ELISA. Mouse neurological deficit scores (mNSS) and water content were detected, and an open-field test was performed to assay anxiety-like behavior. Remarkably decreased Pink1 expression and increased MIP-2, IL-1ß, MCP-1, and TNF-α expression were observed after 12 â€‹h, 24 â€‹h, 48 â€‹h, 72 â€‹h, and 7 â€‹d post-ICH induction in the ipsilateral injury hemispheres. Pink1 deficiency could further up-regulate mNSS scores, brain water content, MIP-2, MCP-1, IL-1ß, and TNF-α in the ipsilateral injury hemispheres. On the other hand, Pink1 deficiency could decrease the number of center cross, the velocity, and the total distance traveled in open field test. Pink1 deficiency could further up-regulate the mRNA levels of pro-inflammatory (M1) molecules (Cd86, Nos2), and down-regulate the relative expression of anti-inflammatory (M2) molecules (Cd206, Arg-1, and IL-10). Pink1 deficiency deteriorates neurological deficits and inflammatory responses after ICH, which can be considered as a treatment target.


Subject(s)
Interleukin-10 , Tumor Necrosis Factor-alpha , Animals , Mice , Brain/metabolism , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Water/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism
8.
Aging (Albany NY) ; 16(1): 648-664, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38194722

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a common chronic age-related joint disease characterized primarily by inflammation of synovial membrane and degeneration of articular cartilage. Accumulating evidence has demonstrated that Danggui-Shaoyao-San (DSS) exerts significant anti-inflammatory effects, suggesting that it may play an important role in the treatment of knee osteoarthritis (KOA). METHODS: In the present study, DSS was prepared and analyzed by high-performance liquid chromatography (HPLC). Bioinformatics analyses were carried out to uncover the functions and possible molecular mechanisms by which DSS against KOA. Furthermore, the protective effects of DSS on lipopolysaccharide (LPS)-induced rat chondrocytes and cartilage degeneration in a rat OA model were investigated in vivo and in vitro. RESULTS: In total, 114 targets of DSS were identified, of which 60 candidate targets were related to KOA. The target enrichment analysis suggested that the NF-κB signaling pathway may be an effective mechanism of DSS. In vitro, we found that DSS significantly inhibited LPS-induced upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP3), and matrix metalloproteinase-13 (MMP13). Meanwhile, the degradation of collagen II was also reversed by DSS. Mechanistically, DSS dramatically suppressed LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vivo, DSS treatment prevented cartilage degeneration in a rat OA model. CONCLUSIONS: DSS could ameliorate the progression of OA through suppressing the NF-κB signaling pathway. Our findings indicate that DSS may be a promising therapeutic approach for the treatment of KOA.


Subject(s)
Drugs, Chinese Herbal , NF-kappa B , Osteoarthritis, Knee , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Signal Transduction , Inflammation/metabolism , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Chondrocytes/metabolism
9.
PLoS One ; 19(1): e0296699, 2024.
Article in English | MEDLINE | ID: mdl-38232086

ABSTRACT

The cancer hazard associated with lifetime exposure to radiofrequency radiation (RFR) was examined in Sprague Dawley (SD) rats at the Ramazzini Institute (RI), Italy. There were increased incidences of gliomas and cardiac schwannomas. The translational relevance of these rare rat tumors for human disease is poorly understood. We examined the genetic alterations in RFR-derived rat tumors through molecular characterization of important cancer genes relevant for human gliomagenesis. A targeted next-generation sequencing (NGS) panel was designed for rats based on the top 23 orthologous human glioma-related genes. Single-nucleotide variants (SNVs) and small insertion and deletions (indels) were characterized in the rat gliomas and cardiac schwannomas. Translational relevance of these genetic alterations in rat tumors to human disease was determined through comparison with the Catalogue of Somatic Mutations in Cancer (COSMIC) database. These data suggest that rat gliomas resulting from life-time exposure to RFR histologically resemble low grade human gliomas but surprisingly no mutations were detected in rat gliomas that had homology to the human IDH1 p.R132 or IDH2 p.R172 suggesting that rat gliomas are primarily wild-type for IDH hotspot mutations implicated in human gliomas. The rat gliomas appear to share some genetic alterations with IDH1 wildtype human gliomas and rat cardiac schwannomas also harbor mutations in some of the queried cancer genes. These data demonstrate that targeted NGS panels based on tumor specific orthologous human cancer driver genes are an important tool to examine the translational relevance of rodent tumors resulting from chronic/life-time rodent bioassays.


Subject(s)
Brain Neoplasms , Glioma , Neurilemmoma , Radiation Exposure , Humans , Rats , Animals , Rats, Sprague-Dawley , Glioma/genetics , Glioma/pathology , Mutation , Neurilemmoma/genetics , High-Throughput Nucleotide Sequencing/methods , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/pathology
10.
Food Funct ; 15(3): 1583-1597, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38240189

ABSTRACT

Osteoporosis (OP) is a systemic disorder characterized by decreased bone mass as well as deteriorated microarchitecture. Although OP in men is common, it has received much less attention than that in women. Ginseng, a famous traditional herb in Asia, is used to strengthen and repair bones by invigorating vital bioenergy and maintaining body homeostasis in dietary intake and clinical applications. However, there is currently no study investigating the impact of ginseng and its active compounds on male osteoporosis. In this study, RNA sequencing and bioinformatic analysis were conducted to reveal the influence of Ginsenoside-Rb2 on RAW264.7 cells and its underlying signaling pathways. The potential anti-osteoporosis effects of Rb2 as well as its molecular mechanisms were elucidated in RAW264.7 cells and BMMs by TRAP staining, F-actin belt staining, qRT-PCR and WB. Moreover, orchiectomy (ORX) was utilized to demonstrate the influence of Rb2 on bone mass loss in vivo by micro-CT scanning, and H&E, TRAP, and IHC staining. The results suggested that Rb2 suppressed osteoclastogenesis and mitigated bone loss in orchiectomy mice through NF-κB/MAPK signaling pathways. These findings indicate that ginseng as well as its active component Rb2 have potential therapeutic value in the management of osteoporosis in men.


Subject(s)
Ginsenosides , Osteoporosis , Female , Male , Humans , Animals , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Osteogenesis , Ginsenosides/metabolism , Osteoclasts , Orchiectomy , Signal Transduction , Osteoporosis/drug therapy , Osteoporosis/genetics , Osteoporosis/metabolism , RANK Ligand/metabolism
11.
Neurotoxicol Teratol ; 100: 107301, 2023.
Article in English | MEDLINE | ID: mdl-37783441

ABSTRACT

Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.


Subject(s)
Gene Expression Profiling , Seizures , Rats , Female , Animals , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/genetics , gamma-Aminobutyric Acid/metabolism , Cytokines
12.
Int J Mol Med ; 52(5)2023 11.
Article in English | MEDLINE | ID: mdl-37800616

ABSTRACT

Iron overload is a prevalent pathological factor observed among elderly individuals and those with specific hematological disorders, and is frequently associated with an elevated incidence of osteoporosis. Although arctiin (ARC) has been shown to possess antioxidant properties and the ability to mitigate bone degeneration, its mechanism of action in the treatment of iron overload­induced osteoporosis (IOOP) remains incompletely understood. To explore the potential molecular mechanisms underlying the effects of ARC, the MC3T3­E1 cell osteoblast cell line was used. Cell Counting Kit was used to assess MC3T3­E1 cell viability. Alkaline phosphatase staining and alizarin red staining were assessed for osteogenic differentiation. Calcein AM assay was used to assess intracellular iron concentration. In addition, intracellular levels of reactive oxygen species (ROS), lipid peroxides, mitochondrial ROS, apoptosis rate and mitochondrial membrane potential changes in MC3T3­E1 cells were examined using flow cytometry and corresponding fluorescent dyes. The relationship between ARC and the PI3K/Akt pathway was then explored by western blotting and immunofluorescence. In addition, the effects of ARC on IOOP was verified using an iron overload mouse model. Immunohistochemistry was performed to evaluate expression of osteogenesis­related proteins. Micro-CT and H&E were used to analyze bone microstructural parameters and histomorphometric indices in the bone tissue. Notably, ARC treatment reversed the decreased viability and increased apoptosis in MC3T3­E1 cells originally induced by ferric ammonium citrate, whilst promoting the formation of mineralized bone nodules in MC3T3­E1 cells. Furthermore, iron overload induced a decrease in the mitochondrial membrane potential, augmented lipid peroxidation and increased the accumulation of ROS in MC3T3­E1 cells. ARC not only positively regulated the anti­apoptotic and osteogenic capabilities of these cells via modulation of the PI3K/Akt pathway, but also exhibited antioxidant properties by reducing oxidative stress. In vivo experiments confirmed that ARC improved bone microarchitecture and biochemical parameters in a mouse model of iron overload. In conclusion, ARC exhibits potential as a therapeutic agent for IOOP by modulating the PI3K/Akt pathway, and via its anti­apoptotic, antioxidant and osteogenic properties.


Subject(s)
Iron Overload , Osteoporosis , Humans , Mice , Animals , Aged , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Osteogenesis , Iron Overload/complications , Iron Overload/drug therapy , Iron Overload/metabolism , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoblasts/metabolism
13.
J Phys Chem Lett ; 14(44): 9943-9950, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37903345

ABSTRACT

The coupled ionic and electronic transport in halide perovskites opens up new possibilities for semiconductor iontronic devices beyond solar cells. Nevertheless, the fundamental understanding of ionic behavior at the microscale remains vague, largely because of the inhomogeneity in polycrystalline thin films. Here, we show that the ion dynamics in single-crystalline perovskite nanoplates (NPs) are significantly different and that an external bias may induce highly anisotropic ionic transport in the NPs, thereby leading to a greatly enhanced local electric field. Using modified scanning photocurrent microscopy (SPCM), the origin of the photocurrent is pinpointed to the cathode region of the NP device, where subsequent energy dispersive spectroscopy (EDS) characterization confirms a large accumulation of halogen vacancies. In addition, the Kelvin probe force microscopy (KPFM) measurement demonstrates a strong built-in electric field within a submicron length near the cathode, which alters the local electronic structure for efficient photo carrier separation. Such field-induced ionic behavior deepens the understanding of ion dynamics in perovskites and promotes scale-down of perovskite micro- and nanoiontronic and ion-optoelectronic devices.

14.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37824216

ABSTRACT

Aberrant fibroblast function plays a key role in the pathogenesis of idiopathic pulmonary fibrosis, a devastating disease of unrelenting extracellular matrix deposition in response to lung injury. Platelet-derived growth factor α-positive (Pdgfra+) lipofibroblasts (LipoFBs) are essential for lung injury response and maintenance of a functional alveolar stem cell niche. Little is known about the effects of lung injury on LipoFB function. Here, we used single-cell RNA-Seq (scRNA-Seq) technology and PdgfraGFP lineage tracing to generate a transcriptomic profile of Pdgfra+ fibroblasts in normal and injured mouse lungs 14 days after bleomycin exposure, generating 11 unique transcriptomic clusters that segregated according to treatment. While normal and injured LipoFBs shared a common gene signature, injured LipoFBs acquired fibrogenic pathway activity with an attenuation of lipogenic pathways. In a 3D organoid model, injured Pdgfra+ fibroblast-supported organoids were morphologically distinct from those cultured with normal fibroblasts, and scRNA-Seq analysis suggested distinct transcriptomic changes in alveolar epithelia supported by injured Pdgfra+ fibroblasts. In summary, while LipoFBs in injured lung have not migrated from their niche and retain their lipogenic identity, they acquire a potentially reversible fibrogenic profile, which may alter the kinetics of epithelial regeneration and potentially contribute to dysregulated repair, leading to fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Animals , Mice , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/pathology , Lung Injury/pathology , Receptor Protein-Tyrosine Kinases/metabolism
15.
iScience ; 26(9): 107616, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37694147

ABSTRACT

WNK1 is an important regulator in many physiological functions, yet its role in male reproduction is unexplored. In the male germline, WNK1 is upregulated in preleptotene spermatocytes indicating possible function(s) in spermatogenic meiosis. Indeed, deletion of Wnk1 in mid-pachytene spermatocytes using the Wnt7a-Cre mouse led to male sterility which resembled non-obstructive azoospermia in humans, where germ cells failed to complete spermatogenesis and produced no sperm. Mechanistically, we found elevated MTOR expression and signaling in the Wnk1-depleted spermatocytes. As MTOR is a central mediator of translation, we speculated that translation may be accelerated in these spermatocytes. Supporting this, we found the acrosome protein, ACRBP to be prematurely expressed in the spermatocytes with Wnk1 deletion. Our study uncovered an MTOR-regulating factor in the male germline with potential implications in translation, and future studies will aim to understand how WNK1 regulates MTOR activity and impact translation on a broader spectrum.

16.
J Virol Methods ; 322: 114810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689372

ABSTRACT

Duck Tembusu virus disease, caused by duck Tembusu virus (DTMUV), brings great harm to duck industry. Early diagnosis is of great significance for the prevention and control of this disease. In order to develop a specific and sensitive method for rapid diagnosis of DTMUV, reverse-transcriptase recombinase aided amplification combined with lateral flow dipstick (RT-RAA-LFD) method for detection of DTMUV was established. Firstly, downstream primer was labeled with biotin and probe was labeled with FAM, and primer concentration, reaction time, and reaction temperature were optimized. Then, the specificity and sensitivity of this method was investigated. The results of specificity test showed that it had no cross reaction with other common pathogens such as low pathogenic avian influenza virus (AIV), Newcastle disease virus (NDV), duck hepatitis A virus (DHV), and duck Reovirus. The results of sensitivity test showed that the minimum detection limit of this method was 10 copies/µL, which was 1000 times than conventional RT-PCR (104 copies/µL), and equivalent to that of fluorescent quantitative PCR. Furthermore, this RT-RAA-LFD method demonstrated excellent intragroup and intergroup consistency. Finally, the RT-RAA-LFD assay and real-time PCR were both utilized to examine 58 clinical samples concurrently. The results showed that the RT-RAA-LFD method (5/58) was more sensitive than the fluorescence quantitative PCR method (4/58). In summary, RT-RAA-LFD method established in this study had a strong specificity and high sensitivity, which provided technical support for clinical detection of DTMUV.


Subject(s)
Flavivirus , Influenza A virus , Animals , Reverse Transcription , Recombinases/metabolism , Flavivirus/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
17.
Nat Metab ; 5(9): 1526-1543, 2023 09.
Article in English | MEDLINE | ID: mdl-37537369

ABSTRACT

Restriction of methionine (MR), a sulfur-containing essential amino acid, has been reported to repress cancer growth and improve therapeutic responses in several preclinical settings. However, how MR impacts cancer progression in the context of the intact immune system is unknown. Here we report that while inhibiting cancer growth in immunocompromised mice, MR reduces T cell abundance, exacerbates tumour growth and impairs tumour response to immunotherapy in immunocompetent male and female mice. Mechanistically, MR reduces microbial production of hydrogen sulfide, which is critical for immune cell survival/activation. Dietary supplementation of a hydrogen sulfide donor or a precursor, or methionine, stimulates antitumour immunity and suppresses tumour progression. Our findings reveal an unexpected negative interaction between MR, sulfur deficiency and antitumour immunity and further uncover a vital role of gut microbiota in mediating this interaction. Our study suggests that any possible anticancer benefits of MR require careful consideration of both the microbiota and the immune system.


Subject(s)
Gastrointestinal Microbiome , Hydrogen Sulfide , Neoplasms , Male , Mice , Female , Animals , Methionine/metabolism , Hydrogen Sulfide/metabolism , Racemethionine , Sulfur
18.
J Cell Biochem ; 124(8): 1155-1172, 2023 08.
Article in English | MEDLINE | ID: mdl-37357411

ABSTRACT

This study aimed to explore the effect of myricitrin on osteoblast differentiation in mice immortalised bone marrow mesenchymal stem cells (imBMSCs). Additionally, ovariectomy (OVX) mice were employed to examine the effect of myricitrin on bone trabecular loss in vivo. The effect of myricitrin on the proliferation of imBMSCs was evaluated using a cell counting kit-8 assay. Alizarin red staining, alkaline phosphatase staining were performed to elucidate osteogenesis. Furthermore, qRT-PCR and western blot determined the expression of osteo-specific genes and proteins. To screen for candidate targets, mRNA transcriptome genes were sequenced using bioinformatics analyses. Western blot and molecular docking analysis were used to examine target signalling markers. Moreover, rescue experiments were used to confirm the effect of myricitrin on the osteogenic differentiation of imBMSCs. OVX mice were also used to estimate the delay capability of myricitrin on bone trabecular loss in vivo using western blot, micro-CT, tartaric acid phosphatase (Trap) staining, haematoxylin and eosin staining, Masson staining and immunochemistry. In vitro, myricitrin significantly enhanced osteo-specific genes and protein expression and calcium deposition. Moreover, mRNA transcriptome gene sequencing and molecular docking analysis revealed that this enhancement was accompanied by an upregulation of the PI3K/AKT signalling pathway. Furthermore, copanlisib, a PI3K inhibitor, partially reversed the osteogenesis promotion induced by myricitrin. In vivo, western blot, micro-CT, hematoxylin and eosin staining, Masson staining, Trap staining and immunochemistry revealed that bone trabecular loss rate was significantly alleviated in the myricitrin low- and high-dose groups, with an increased expression of osteopontin, osteoprotegerin, p-PI3K and p-AKT compared to the OVX group. Myricitrin enhances imBMSC osteoblast differentiation and attenuate bone mass loss partly through the upregulation of the PI3K/AKT signalling pathway. Thus, myricitrin has therapeutic potential as an antiosteoporosis drug.


Subject(s)
Bone Diseases, Metabolic , Osteogenesis , Animals , Female , Mice , Cell Differentiation , Cells, Cultured , Eosine Yellowish-(YS)/pharmacology , Molecular Docking Simulation , Osteogenesis/genetics , Ovariectomy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger
19.
Arthritis Rheumatol ; 75(11): 2014-2026, 2023 11.
Article in English | MEDLINE | ID: mdl-37229703

ABSTRACT

OBJECTIVE: Transcript and protein expression were interrogated to examine gene locus and pathway regulation in the peripheral blood of active adult dermatomyositis (DM) and juvenile DM patients receiving immunosuppressive therapies. METHODS: Expression data from 14 DM and 12 juvenile DM patients were compared to matched healthy controls. Regulatory effects at the transcript and protein level were analyzed by multi-enrichment analysis for assessment of affected pathways within DM and juvenile DM. RESULTS: Expression of 1,124 gene loci were significantly altered at the transcript or protein levels across DM or juvenile DM, with 70 genes shared. A subset of interferon-stimulated genes was elevated, including CXCL10, ISG15, OAS1, CLEC4A, and STAT1. Innate immune markers specific to neutrophil granules and neutrophil extracellular traps were up-regulated in both DM and juvenile DM, including BPI, CTSG, ELANE, LTF, MPO, and MMP8. Pathway analysis revealed up-regulation of PI3K/AKT, ERK, and p38 MAPK signaling, whose central components were broadly up-regulated in DM, while peripheral upstream and downstream components were differentially regulated in both DM and juvenile DM. Up-regulated components shared by DM and juvenile DM included cytokine:receptor pairs LGALS9:HAVCR2, LTF/NAMPT/S100A8/HSPA1A:TLR4, CSF2:CSF2RA, EPO:EPOR, FGF2/FGF8:FGFR, several Bcl-2 components, and numerous glycolytic enzymes. Pathways unique to DM included sirtuin signaling, aryl hydrocarbon receptor signaling, protein ubiquitination, and granzyme B signaling. CONCLUSION: The combination of proteomics and transcript expression by multi-enrichment analysis broadened the identification of up- and down-regulated pathways among active DM and juvenile DM patients. These pathways, particularly those which feed into PI3K/AKT and MAPK signaling and neutrophil degranulation, may be potential therapeutic targets.


Subject(s)
Dermatomyositis , Humans , Adult , Dermatomyositis/metabolism , Transcriptome , Proteomics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
20.
Nat Commun ; 14(1): 1927, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045819

ABSTRACT

Cancer cells exhibit elevated lipid synthesis. In breast and other cancer types, genes involved in lipid production are highly upregulated, but the mechanisms that control their expression remain poorly understood. Using integrated transcriptomic, lipidomic, and molecular studies, here we report that DAXX is a regulator of oncogenic lipogenesis. DAXX depletion attenuates, while its overexpression enhances, lipogenic gene expression, lipogenesis, and tumor growth. Mechanistically, DAXX interacts with SREBP1 and SREBP2 and activates SREBP-mediated transcription. DAXX associates with lipogenic gene promoters through SREBPs. Underscoring the critical roles for the DAXX-SREBP interaction for lipogenesis, SREBP2 knockdown attenuates tumor growth in cells with DAXX overexpression, and DAXX mutants unable to bind SREBP1/2 have weakened activity in promoting lipogenesis and tumor growth. Remarkably, a DAXX mutant deficient of SUMO-binding fails to activate SREBP1/2 and lipogenesis due to impaired SREBP binding and chromatin recruitment and is defective of stimulating tumorigenesis. Hence, DAXX's SUMO-binding activity is critical to oncogenic lipogenesis. Notably, a peptide corresponding to DAXX's C-terminal SUMO-interacting motif (SIM2) is cell-membrane permeable, disrupts the DAXX-SREBP1/2 interactions, and inhibits lipogenesis and tumor growth. These results establish DAXX as a regulator of lipogenesis and a potential therapeutic target for cancer therapy.


Subject(s)
Lipogenesis , Neoplasms , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Lipids , Lipogenesis/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...