Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 186: 114313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729689

ABSTRACT

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Subject(s)
Acinetobacter , Coculture Techniques , Food Microbiology , Pseudomonas , Red Meat , Stenotrophomonas maltophilia , Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Pseudomonas/metabolism , Pseudomonas/growth & development , Acinetobacter/growth & development , Acinetobacter/metabolism , Stenotrophomonas maltophilia/growth & development , Stenotrophomonas maltophilia/metabolism , Red Meat/microbiology , Red Meat/analysis , Sheep , Food Storage , Cold Temperature , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/analysis , Amino Acids/metabolism , Amino Acids/analysis , Sheep, Domestic/microbiology , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...