Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203018

ABSTRACT

In this paper, N-vinylpyrrolidone was copolymerized with acrylic acid and itaconic acid by free radical polymerization, and a series of polyacrylic acid-co-itaconic acid-co-N-vinylpyrrolidone (PAIN) dispersants with different pyrrolidone ligand contents were synthesized and characterized. Then, the cobalt blue nano-pigment slurry (20 wt%) was prepared through a water-based grinding method, and the optimum grinding technology was explored and determined as follows: PAIN2 as a dispersant, a dispersant dosage of 10 wt%, and a grinding time of 480 min. According to this optimum grinding technology, the prepared pigment slurry had a significantly decreased agglomeration, the D90 of which was 82 nm, and separately increased to 130 nm and 150 nm after heat storage for 3 and 7 days, exhibiting excellent heat storage stability. Additionally, its TSI value was also the lowest (1.9%), indicating good dispersion stability. The QCM and adorption capacity measuring results showed PAIN2 had a larger adsorption capacity, and the formed adsorption layer had a higher rigidity and was not easy to fall off. This was caused by both the interaction of carboxyl groups and the pyrrolidone ligand (strong coordination interaction) in PAIN2 with cobalt blue. The XPS and FT-IR measurements further proved the above-mentioned adsorption mechanism.

2.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611699

ABSTRACT

Improving the thermal storage stability of nanosuspension concentrate (SC) prepared from low-melting-point pesticide is a recognized problem. In this work, using pyraclostrobin as the raw material, 25 wt% of pyraclostrobin nano-SC was prepared through a water-based grinding method, and the optimal grinding conditions were obtained as follows: a grinding time of 23 h, D-3911 as dispersant and a dispersant dosage of 12 wt%. The pyraclostrobin nano-SC D90 size prepared based on this best formula was 216 nm. Adding glycerin could improve the stability of nano-SC at room temperature, but its thermal storage stability was still poor. For this problem, sodium lignosulfonate and cetyltrimethylammonium bromide (NaLS/CTAB) colloidal spheres were prepared through electrostatic and hydrophobic self-assembly and characterized. The delamination and precipitation of nano-SC can be significantly improved by adding an appropriate amount of colloidal spheres, and the nano-SC D90 size decreased from 2726 to 1023 nm after 7 days of thermal storage. Farmland experiments indicated the control efficiency of pyraclostrobin nano-SC against flowering cabbage downy mildew disease was about 30% higher than that of SC. Especially after adding the wetting agent, the effect of nano-SC could be comparable to that of commercial Kairun (currently the best pyraclostrobin formulation in the world).

SELECTION OF CITATIONS
SEARCH DETAIL