Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Mikrochim Acta ; 191(7): 376, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849560

ABSTRACT

CRISPR/Cas system has been widely applied in the assay of disease-related nucleic acids. However, it is still challenging to use CRISPR/Cas system to detect multiple nucleic acids at the same time. Herein, we combined the preponderance of DNA logic circuit, label-free, and CRISPR/Cas technology to construct a label-free "AND" logical gate for multiple microRNAs detection with high specificity and sensitivity. With the simultaneous input of miRNA-155 and miRNA-141, the logic gate starts, and the activation chain of Cas12a is destroyed; thus, the activity is inhibited and the fluorescence of the signal probe ssDNA-AgNCs is turned on. The detection limit of this method for simultaneous quantitative detection of double target is 84 fmol/L (S/N = 3). In this "AND" logic gate, it is only necessary for the design of a simple DNA hairpin probe, which is inexpensive and easy, and since this method involves only one signal output, the data processing is very simple. What is more important, in this strategy two types of microRNAs can be monitored simultaneously by only using CRISPR/Cas12a and a type of crRNA, which offers a new design concept for the exploitation of single CRISPR/Cas system for multiple nucleic acid assays.


Subject(s)
CRISPR-Cas Systems , MicroRNAs , MicroRNAs/analysis , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Humans , Limit of Detection , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/genetics , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Bacterial Proteins/genetics , DNA/genetics , DNA/chemistry
2.
Talanta ; 273: 125952, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38513474

ABSTRACT

A double 3D DNA walker nanomachine by DNAzyme self-driven positive feedback loop amplification for the detection of miRNA was constructed. This method uses two gold nanoparticles as the reaction core, and because of the spatial confinement effect the local concentration of the reactants increase the collision efficiency was greatly improved. Meanwhile, the introduction of positive feedback loop promotes the conversion efficiency. In presence of miRNA-21, a large amount of DNAzyme was released and hydrolyze the reporter probe, resulting the recovery of fluorescence signal. The linear range for miRNA-21 is 0.5-60 pmol/L, and the detection limit is 0.41 pmol/L (S/N = 3). This nanomachine has been successfully used for accurate detection of miRNA-21 expression levels in cell lysates. At the same time, it can enter cells for intracellular miRNA-21 fluorescence imaging, distinguishing tumor cells from normal cells. This combination of in vitro detection and imaging analysis of living cells can achieve the goal of jointly detecting cancer markers through multiple pathways, providing new ideas for early diagnosis and screening of diseases.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Metal Nanoparticles , MicroRNAs , MicroRNAs/analysis , DNA, Catalytic/metabolism , Gold , Feedback , DNA/genetics , Biosensing Techniques/methods , Limit of Detection
3.
Anal Chim Acta ; 1251: 340950, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-36925314

ABSTRACT

The CRISPR-Cas system has broad prospects as a new type of nucleic acid signal amplification technology based on the trans-cleavage activity of Cas12a to single-stranded DNA, but the trans-cleavage reaction efficiency is relatively low in solution. In order to overcome this negative factor, a new 3D DNA nanomachine whose CRISPR-Cas12a is limited to the surface of nanoparticles is used for sensitive and stable detection of miRNA. By loading Cas12a activator onto spherical nucleic acid (SNA), the CRISPR-Cas12a activator system on the surface of Au nanoparticles (AuNPs) acts as a walker to carry out continuous recognition-walking-cutting reaction on the surface of AuNPs, which enhances the trans-cleavage activity of Cas12a to SNAs. Benefiting from the confinement effect of spherical nucleic acids surface, a 3D DNA nanomachine has been developed for the detection of miRNA-21, which has achieved high sensitivity and accuracy, and the detection limit is able to reach 8.0 pM. This new 3D DNA walker-like nanomachine provided another insight for future bioanalysis and early clinical diagnoses of disease and liquid biopsy.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Nucleic Acids , CRISPR-Cas Systems , Gold , DNA/genetics , MicroRNAs/genetics
4.
Circulation ; 112(9 Suppl): I135-43, 2005 Aug 30.
Article in English | MEDLINE | ID: mdl-16159805

ABSTRACT

BACKGROUND: Heart failure remains a significant problem. Tissue-engineered cardiac patches offer potential to treat severe heart failure. We studied an extracellular matrix scaffold for repairing the infarcted left ventricle. METHODS AND RESULTS: Pigs (n=42) underwent left ventricular (LV) infarction. At 6 to 8 weeks, either 4-layer multilaminate urinary bladder-derived extracellular matrix or expanded polytetrafluoroethlyene (ePTFE) was implanted as full-thickness LV wall patch replacement. At 1-week, 1-month, or 3-month intervals, pigs were terminated. After macroscopic examination, samples of tissue were prepared for histology, immunocytochemistry, and analysis of cell proportions by flow cytometry. One-week and 1-month patches were intact with thrombus and inflammation; at 1 month, there was also tissue with spindle-shaped cells in proteoglycan-rich and collagenous matrix. More alpha-smooth muscle actin-positive cells were present in urinary bladder matrix (UBM) than in ePTFE (22.2+/-3.3% versus 8.4+/-2.7%; P=0.04). At 3 months, UBM was bioresorbed, and a collagen-rich vascularized tissue with numerous myofibroblasts was present. Isolated regions of alpha-sarcomeric actin-positive, intensely alpha-smooth muscle actin-immunopositive, and striated cells were observed. ePTFE at 3 months had foreign-body response with necrosis and calcification. Flow cytometry showed similarities of cells from UBM to normal myocardium, whereas ePTFE had limited cardiomyocyte markers. CONCLUSIONS: Appearance of a fibrocellular tissue that included contractile cells accompanied biodegradation of UBM when implanted as an LV-free wall infarction patch. UBM appears superior to synthetic material for cardiac patching and trends toward myocardial replacement at 3 months.


Subject(s)
Extracellular Matrix/transplantation , Heart Failure/surgery , Prostheses and Implants , Tissue Engineering , Absorbable Implants , Animals , Biocompatible Materials , Biomarkers , Female , Flow Cytometry , Heart Failure/etiology , Heart Ventricles/surgery , Male , Materials Testing , Myocardial Infarction/complications , Myocardium/pathology , Polytetrafluoroethylene , Sus scrofa , Urinary Bladder/ultrastructure , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL