Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Chemosphere ; 349: 140896, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070606

ABSTRACT

Chitosan is a biodegradable polymer with a vast range of applications. Along with its metal composites, chitosan has been applied in the remediation of polluted soils as well as a biofertilizer. However, little attention has been given to the degradation of chitosan composites in soil and how they affect soil respiration rate and other physicochemical parameters. In this study, the degradation of chitosan and its composites with gibbsite and hematite in an acidic Ultisol and the effect on urea (200 mg N kg-1) transformation were investigated in a 70-d incubation experiment. The results showed that the change trends of soil pH, N forms, and CO2 emissions were similar for chitosan and its composites when applied at rates <5 g C kg-1. At a rate of 5 g C kg-1, the C and N mineralization trends suggested that the chitosan-gibbsite composite was more stable in soil and this stability was owed to the formation of a new chemical bond (CH-N-Al-Gibb) as observed in the Fourier-transform infrared spectrum at 1644 cm-1. The mineralization of the added materials significantly increased soil pH and decreased soil exchangeable acidity (P < 0.01). This played an important role in decreasing the amount of H+ produced during urea transformation in the soil. The soil's initial pH was an important factor influencing C and N mineralization trends. For instance, increasing the initial soil pH significantly increased the nitrification rate and chitosan decomposition trend (P < 0.01) and thus, the contribution of chitosan and its composites to increase soil pH and inhibit soil acidification during urea transformation was significantly decreased (P < 0.01). These findings suggest that to achieve long-term effects of chitosan in soils, applying it as a chitosan-gibbsite complex is a better option.


Subject(s)
Chitosan , Soil , Soil/chemistry , Carbon/chemistry , Nitrogen/analysis , Urea , Hydrogen-Ion Concentration
2.
Sci Total Environ ; 874: 162464, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858227

ABSTRACT

Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.


Subject(s)
Nitrification , Soil , Soil/chemistry , Bacteria , Charcoal/chemistry , Arachis , Hydrogen-Ion Concentration , Soil Microbiology
3.
J Sci Food Agric ; 103(7): 3531-3539, 2023 May.
Article in English | MEDLINE | ID: mdl-36788119

ABSTRACT

BACKGROUND: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops. However, the differences in the effects of root surface charge on the uptake of Mn(II) among various crop species are not well understood. RESULTS: The roots of nine legumes and six non-legume poaceae were obtained by hydroponics and the streaming potential method and spectroscopic analysis were used to measure the zeta potentials and functional groups on the roots, respectively. The results indicate that the exchangeable Mn(II) adsorbed by plant roots was significantly positively correlated with the Mn(II) accumulated in plant shoots. Legume roots carried more negative charges and functional groups than non-legume poaceae roots, which was responsible for the larger amounts of exchangeable Mn(II) on legume roots in 2 h and the Mn(II) accumulated in their shoots in 48 h. Coexisting cations, such as Ca2+ and Mg2+ , were most effective in decreasing Mn(II) taken up by roots and accumulated in shoots than K+ and Na+ . This was because Ca2+ and Mg2+ could compete with Mn(II) for active sites on plant roots more strongly compared to K+ and Na+ . CONCLUSION: The root surface charge and functional groups are two important factors influencing Mn(II) uptake by roots and accumulation in plant shoots. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Poaceae , Manganese , Biological Transport , Crops, Agricultural , Vegetables , Soil , Plant Roots
4.
J Hazard Mater ; 442: 130140, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36241499

ABSTRACT

The rising atmospheric CO2 is a major driver for climate change, directly affects rice production. Cadmium (Cd) in paddy soils also serves as a persistent concern. Currently, few studies consider the rice response to coupled stresses of elevated CO2 (eCO2) and soil Cd. Experimental evidence understanding the effects and mechanisms of eCO2 on Cd uptake by rice is lacking yet. In a free-air CO2 enrichment (FACE) system, a 3-year pot experiment was conducted to explore the Cd uptake by rice under two CO2 conditions (ambient and ambient + 200 µmol·mol-1) using combinations of in-situ Cd-contaminated soils and associated rice varieties. Results showed that more low-crystalline Fe oxides (Feh) in iron plaque (IP) were deposited on root surface with the increased dissolved Fe2+ due to lower soil redox status under eCO2. The Cd accumulation in rice was hindered due to more Cd associated with Feh (Feh-Cd) rather than uptake by roots. Taken together, the relative effects of eCO2 on Cd uptake by rice were consistent across years under different Cd-contaminated soils. Our findings will help to better understand the Cd uptake by rice under future climate conditions, and thus push the development of climate-crop-soil models and accurate prediction for food security.


Subject(s)
Oryza , Soil Pollutants , Cadmium/chemistry , Oryza/chemistry , Carbon Dioxide , Soil Pollutants/analysis , Soil/chemistry , Iron/chemistry , Oxides
5.
Chemosphere ; 309(Pt 1): 136749, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36209864

ABSTRACT

Phosphorus (P) availability in highly weathered soils is significantly influenced by the contents of iron (Fe)/aluminum (Al) oxides, clay minerals, and organic matter. With the increasing interest in biofertilizers (e.g. chitosan), it is important to understand how they affect P adsorption profiles on colloids of weathered soils rich in Fe/Al oxides. Thus, the effect of chitosan on the adsorption of P to colloids of hematite, gibbsite, Oxisol, and Ultisol was studied through electrokinetic measurements, spectroscopic analysis, and adsorption edge/isotherm profiles. The presence of chitosan significantly improved the surface positive charge and the decreasing trend of surface positive charge was slower for chitosan-treated colloids compared to the control with increasing pH. At pH 5.0, all the colloids were positively charged, with the oxides containing more positve charges than the soil colloids. At this pH value, the surface coverage capacity of P was 99.1, 61.6, 50.5, and 37.5 mmol kg⁻1 for Oxisol, Ultisol, hematite, and gibbsite, respectively. This suggests that clay minerals in soil colloids were vital in enhancing P adsorption. In the presence of chitosan, the surface coverage capacity of P was increased by 111%, 173%, 647%, and 488% for Oxisol, Ultisol, gibbsite, and hematite, respectively. Drawing inferences from spectroscopic analysis, citric acid desorption profile, and zeta potential analysis, we suggest that chitosan (CH) enhanced P adsorption by promoting the formation of (i) citric acid "undisplaceable" inner-sphere P complexes such as [Colloid-OP-O-CH] and [Colloid-OP-N-CH], (ii) citric acid "displaceable" outer-sphere P complexes such as {[Colloid-O-CH]-OP} and {[Colloid-N-CH]-OP}, and (iii) water "leachable or soluble" P complexes such as {[Colloid-CH]+PO4³â»} and {[Colloid-OP]⁻CH+}. Thus, applying chitosan as a biofertilizer (source of N) along with P in highly weathered soils could improve P availability while reducing P leaching.


Subject(s)
Chitosan , Soil Pollutants , Phosphates/chemistry , Soil Pollutants/analysis , Clay , Aluminum , Soil/chemistry , Colloids/chemistry , Phosphorus , Minerals , Iron , Oxides , Citric Acid , Water
6.
Environ Pollut ; 290: 118001, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34419861

ABSTRACT

Ion sorption on soil and sediment has been reported to be potentially affected by bacteria which may interact both physically and chemically with solid surfaces. However, whether and how bacteria affect the sorption of inorganic phosphate (P) on soil colloids remains poorly known. Here, we comparably investigated the P sorption on four soil colloids (three highly weathered soils including two Oxisols and one Ultisol and one weakly weathered soil Alfisol) and their complexes with Bacillus subtilis and Pseudomonas fluorescens. Batch experiments showed a notable reduction in P sorption on the colloids of highly weathered soils by the two bacteria at varying P concentrations and pHs; whereas that on the colloids of Alfisol appeared to be unaffected by the bacteria. The inhibitory effect was confirmed by both greater decline in P sorption at higher bacteria dosages and the ability of the bacteria to desorb P pre-adsorbed on the colloids. Further evidence was given by isothermal titration calorimetric experiments which revealed an alteration in enthalpy change caused by the bacteria for P sorption on Oxisol but not for that on Alfisol. The B. subtilis was more efficient in suppressing P sorption than the P. fluorescens, indicating a dependence of the inhibition on bacterium type. After association with bacteria, zeta potentials of the soil colloids decreased considerably. The decrease positively correlated with the decline in P sorption, regardless of soil and bacterium types, demonstrating that the increment in negative charges of soil colloids by bacteria probably contributed to the inhibition. In addition, scanning electron microscopic observation and the Derjaguin-Landau-Verwey-Overbeek theory prediction suggested appreciable physical and chemical interactions between the bacteria and the highly weathered soil colloids, which might be another contributor to the inhibition. These findings expand our understandings on how bacteria mobilize legacy P in soils and sediments.


Subject(s)
Soil Pollutants , Soil , Adsorption , Bacillus subtilis , Colloids , Phosphates , Soil Pollutants/analysis
7.
J Environ Manage ; 297: 113306, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34280864

ABSTRACT

Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.


Subject(s)
Pinus , Soil Pollutants , Biomass , Ecosystem , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
8.
Ecotoxicol Environ Saf ; 223: 112547, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34330039

ABSTRACT

Excessive amounts of copper (Cu) in soils causes toxic effects on plants. In this study, 58 rice cultivars were classified into tolerant, moderately tolerant, and susceptible types for Cu(II) toxicity based on 50% germination (LC50). Nine japonica rice varieties (three each from the tolerant, moderately tolerant, and susceptible groups) and six indica rice varieties (three from the moderately tolerant and susceptible groups) were selected for the hydroponics experiments. In the short-term adsorption experiment, Cu(II) adsorbed on rice roots was differentiated into exchangeable, complexed, and precipitated forms. Similarly, it was done for long-term culture. Absorption of Cu(II) by rice roots and shoots was also measured. The results indicated that adsorbed Cu(II) mainly existed as complexed and exchangeable forms on rice roots in the short-term adsorption experiment, and the exchangeable and complexed Cu(II) levels were greater for indica rice than for japonica rice due to the larger negative charge on the indica rice roots. The adsorbed Cu(II) mainly existed as a complexed form in the long-term culture experiment, and the exchangeable Cu(II) level was much lower than that in the short-term adsorption experiment due to the absorption of Cu(II) by rice plants. The indica varieties absorbed more Cu(II) than the japonica varieties. Furthermore, the absorption and accumulation of Cu(II) by the susceptible varieties were greater than by the tolerant and moderately tolerant varieties for both the japonica and indica rice. The absorption and accumulation of Cu(II) in rice roots were much greater than in the shoots. Chlorophyll content, and the lengths and dry matter weights of the rice roots and shoots decreased with increasing Cu(II) concentration. The Cu(II) showed greater toxicity toward indica varieties than japonica varieties, and the greater negative charge on indica roots was one of reasons for the greater exchangeable Cu(II) on the roots, the increase in Cu(II) toxicity, and the higher uptake of Cu(II) by indica rice varieties compared to japonica rice varieties.


Subject(s)
Oryza , Soil Pollutants , Adsorption , Copper/toxicity , Soil , Soil Pollutants/toxicity
9.
J Hazard Mater ; 416: 125834, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33873034

ABSTRACT

The increasing use of nanoparticles (NPs) has raised concerns about their potential environmental risks. Many researches on NPs focused on the toxicity mechanism to microorganisms, but neglect the toxicity effects in relation to nutritional conditions. Here, we evaluated the interactive effects of zinc oxide (ZnO) NPs and phosphorus (P) levels on the bacterial community and functioning of periphytic biofilms. Results showed that long-term exposure to ZnO NPs significantly reduced alkaline phosphatase activity (APA) of periphytic biofilms just in P-limited conditions. Co-occurrence network analysis indicated that ZnO NPs exposure reduced network complexity between bacterial taxa in P-limited conditions, while the opposite trend was observed in P-replete conditions. Correlation analysis and random forest modeling suggested that excessive Zn2+ released and high reactive oxygen species (ROS) production might be mainly responsible for the inhibition of APA induced by ZnO NPs under P-limited conditions, while adjustment of bacterial diversity and improvement of keystone taxa cooperation were the main mechanisms in maintaining APA when subjected to weak toxicity of ZnO NPs in P-replete conditions. Taken together, our results provide insights into the biological feedback mechanism involved in ZnO NPs exposure on the ecological function of periphytic biofilms in different P nutritional conditions.


Subject(s)
Nanoparticles , Zinc Oxide , Biofilms , Feedback , Nanoparticles/toxicity , Phosphorus , Zinc Oxide/toxicity
10.
Environ Pollut ; 281: 116993, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33799210

ABSTRACT

To explore the relationship between Al phytotoxicity and the electrochemical characteristics of wheat root surfaces, a new chemical mechanism for tolerance of wheat to Al toxicity was initially proposed by conducting acute root elongation experiment, adsorption/desorption experiment, streaming potential determination, and infrared spectroscopy (ATR-FTIR) analysis respectively to classify the grade of Al tolerance of 92 wheat cultivars and quantitatively characterize the electrochemical properties of their root surfaces. Then a pot experiment was conducted with the screened wheat cultivars with different Al resistance grown on acid soils to verify their tolerance to Al toxicity. Results show that zeta potentials of the roots of 67 wheat cultivars at pH4.46 were significantly negatively correlated with Al(Ⅲ) adsorbed on the roots and their relative root elongation (P < 0.05), indicating that wheat roots with less negative charges is more tolerant to Al toxicity. Based on the mechanism, 14 Al-tolerant, 23 medium Al-tolerant and 30 Al-sensitive wheat cultivars were classified. The pot experiment reveals that the relative dry weight of Al-tolerant wheat cultivars was generally greater than that of medium Al-tolerant and Al-sensitive wheat cultivars and Al-tolerant wheat cultivars accumulate less Al in their shoots, which further verifies the relationship among charge characteristics, tolerance of wheat to Al toxicity, and Al uptake by wheat. The negative charges derived from organic functional groups on root surfaces could influence the exchangeable and complexed Al(Ⅲ) adsorbed on wheat roots and thereby affect Al tolerance of wheat cultivars. This finding not only provides a new perspective to screen Al-tolerant wheat cultivars and explain the mechanism of tolerance of wheat to Al toxicity, but is also useful for the prediction of differences in the uptake of Al in the shoots between Al-tolerant and Al-sensitive wheat cultivars, and finally contributes to the prevention of food security risk caused by Al in acid soils.


Subject(s)
Soil Pollutants , Triticum , Aluminum/toxicity , Plant Roots , Soil
11.
Ecotoxicol Environ Saf ; 207: 111224, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32890955

ABSTRACT

The roots of 4 japonica, 4 indica, and 7 hybrid rice varieties were obtained by hydroponic experiment and used to explore the relationship between charge characteristics and exchangeable manganese(II) (Mn(II)) on rice roots and Mn(II) absorption in roots and shoots of the rice. Results indicated Mn(II) adsorbed on rice roots mainly existed as exchangeable Mn(II) after 2 h. The roots of indica and hybrid rice carried more negative charges than the roots of japonica rice. Accordingly, this led to more exchangeable Mn(II) to be adsorbed on roots of indica and hybrid rice after 2 h and more Mn(II) absorbed in the roots of the same varieties after 48 h. However, this was contrary to the result of Mn(II) absorption in rice shoots after 48 h. Coexisting cations of K+, Na+, Ca2+, and Mg2+ reduced the exchangeable Mn(II) on rice roots through their competition with Mn(II) for sorption sites on rice roots, which led to the decrease in Mn(II) absorption in rice roots and shoots. Ca2+ and Mg2+ showed a greater decrease in the Mn(II) absorbed in roots and shoots than K+ and Na+. The reduction of Mn(II) absorption in the roots of indica rice and hybrid rice induced by Ca2+ and Mg2+ was more than that of japonica rice. This was attributed to more negative charges on the roots of the former than the latter. Therefore, the absorption of Mn(II) by rice roots was determined by surface charge properties and exchangeable Mn(II) on the rice roots. The results suggested that Ca2+ and Mg2+ have potential to alleviate Mn(II) toxicity to rice.


Subject(s)
Manganese/toxicity , Oryza/metabolism , Soil Pollutants/toxicity , Adsorption , Manganese/metabolism , Oryza/drug effects , Plant Roots/drug effects , Soil Pollutants/metabolism
12.
Environ Pollut ; 267: 115590, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254607

ABSTRACT

The rapid increase in soil acidification rate has led to a decrease in global agricultural productivity owing to the debilitating effects of Al and Mn toxicities. In this study, we investigated the adaptation of plants to acidic conditions by examining the behavior of plant roots grown in hydroponic solution and pot experiments at different pHs. The Mn(II) sorption by the roots was investigated and the mechanisms involved were deduced by analyzing the changes in the zeta potential and functional groups on the root surface. The exchangeable, complexed, and precipitated Mn(II) on plant roots were extracted sequentially with 1 M KNO3, 0.05 M EDTA-2Na, and 0.01 M HCl. The results of hydroponic experiment indicated that plant roots subjected to NH4+ treatment carried lower negative charge and fewer functional groups owing to acidic pH condition induced by NH4+ uptake of roots, when compared with plant roots treated with NO3-. Similarly, in pot experiments, the surface negative charge and functional groups of plant roots cultured in soils with lower pH were fewer than those on plant roots cultured in soils with higher pH, with the former presenting less exchangeable and complexed Mn(II) sorption than the latter. Thus, alterations in the charge properties and number of functional groups on the surface of plant roots are some of the mechanisms used by plants to adapt to acidic soil condition.


Subject(s)
Soil Pollutants , Soil , Acclimatization , Agriculture , Biological Transport , Hydroponics , Plant Roots
13.
Environ Sci Pollut Res Int ; 27(24): 30178-30189, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32451890

ABSTRACT

The toxicity of aluminum (Al) to plants in acidic soils depends on the Al species in soil solution. The effects of crop straw biochars on Al species in the soil solution, and canola growth and yield were investigated in this study. In a long-term field experiment, there were four treatments, which were a control, rice straw biochar (RSB), canola straw biochar (CSB), and peanut straw biochar (PSB). The soil solution was collected in situ, the Al species were identified, and the relationships between the concentration of phytotoxic Al and canola growth and yield were evaluated. The results showed that applying the three biochars resulted in significant decreases in the concentrations of total Al, monomeric Al, and monomeric inorganic Al (P < 0.05). The Al3+, Al-OH, and Al-SO4 proportions of the total Al also decreased. The abilities of the different biochars to reduce dissolved Al followed the order PSB > CSB > RSB, which was consistent with the alkalinity of these biochars. Application of the biochars significantly decreased the concentration of phytotoxic Al (Al3+ + Al-OH), which improved canola growth and increased the canola seed and straw yields. Plant height, leaf number per plant, area per leaf, chlorophyll content, and canola yield were negatively correlated with the Al3+ + Al-OH concentrations. Therefore, the results showed that crop straw biochars can be used to ameliorate soil acidity and alleviate Al toxicity in acidic soils, and that peanut straw biochar is the best amendment for acidic soils.


Subject(s)
Brassica napus , Oryza , Soil Pollutants/analysis , Aluminum , Charcoal , Soil
14.
Sci Total Environ ; 720: 137711, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32325605

ABSTRACT

The phosphorus (P) supply is mismatched with rice demand in the early and late stages of rice growth, which primarily results in low P use efficiency and high environmental risk. In recent years, the use of the natural periphyton in nutrient regulation in paddy fields has attracted much research interest. However, a mechanistic understanding of the action of periphyton on P biogeochemical cycling during the pivotal stages of rice growth has received little attention. In this study, the influence of periphyton proliferation on the soil surface and its consequential decomposition on P migration and bioavailability were investigated in two paddy soils using two microcosm experiments. The results showed that periphyton rapidly accumulated fertilizer P when it proliferated on the soil surface under favorable light condition, which led to more fertilizer P being stored on the soil surface and less P being fixed by soil particles or transported via runoff into the water bodies. The decomposition of periphyton under unfavorable light condition not only increased soil soluble reactive P, but also increased the amount of easily available P species, such as labile P, AlP, FeP, and mobilized OP. Thus, periphyton colonizing the soil surface in the early stage of rice growth could act as a P sink and decrease the P environmental risk, and its decomposition in the late stage of rice growth could act as a P source and activator. Phosphorus bioavailability regulated by periphyton could be synchronous with rice needs. Thus, periphyton has the potential to increase P use efficiency in paddy fields.


Subject(s)
Oryza , Fertilizers , Periphyton , Phosphorus , Soil
15.
Sci Total Environ ; 719: 137448, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32112949

ABSTRACT

Biochar can effectively alleviate the Al phytotoxicity in acidic soils due to its alkaline nature. However, the longevity of this alleviation effect of biochar under re-acidification conditions is still unclear. In the present study, the maize root growth responding to the simulated re-acidification of two acidic soils amended by peanut straw biochar or Ca(OH)2 was investigated to evaluate the long-term effect of biochar on alleviating Al toxicity in acidic soils. Compared with Ca(OH)2 amendment, the application of biochar significantly retarded Al toxicity to plant during soil re-acidification. When 4.0 mM HNO3 was added, the maize seedling root elongation in an Oxisol with biochar was 99% higher than that in the Oxisol with Ca(OH)2. Also, the Evans blue uptake and Al content in the root tip in the biochar treatment were 60% and 51% lower than those in the Ca(OH)2 treatment. The retarding effect was mainly attributed to the slow decrease in soil pH during acidification and the release of dissolved organic carbon (DOC) in the soils amended by biochar. The slower decrease in soil pH resulting from the increased pH buffering capacity after biochar application inhibited the increase of soluble and exchangeable Al during re-acidification. The increased DOC after biochar application decreased the toxic soluble Al speciation at the same pH value and total Al concentration in soil solution. Therefore, given the re-acidification of soils, biochar presented a longer-term effect on alleviating Al toxicity of acidic soil than liming.


Subject(s)
Zea mays , Charcoal , Hydrogen-Ion Concentration , Soil , Soil Pollutants
16.
Ecotoxicol Environ Saf ; 187: 109813, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31644989

ABSTRACT

To explore the relationship between charge characteristics of rice roots and aluminum (Al) tolerance of rice, roots of 47 different rice genotypes were obtained by hydroponic experiment. The zeta potentials of roots were determined by streaming potential method, and the Al tolerance and the functional groups of rice were measured by relative root elongation and infrared spectroscopy (ATR-FTIR), respectively. The exchangeable, complexed and precipitated Al(III) sorbed on the root surface of rice was extracted with 1 mol L-1 KNO3, 0.05 mol L-1 EDTA-2Na and 0.01 mol L-1 HCl, respectively. There was a significant correlation between the zeta potentials and the relative elongation of rice roots, indicating that the zeta potentials of rice roots could be used to characterize rice tolerance to Al toxicity. Twelve Al-tolerant rice varieties, 25 medium Al-tolerant rice varieties, and 10 Al-sensitive rice varieties were obtained. The Al-tolerant rice varieties sorbed less complexed Al(III) and total Al(III) because there was lower negative charge on their roots compared to less tolerant genotypes. A correlation analysis showed that there were significant negative correlations between the zeta potential, relative root elongation, and the total Al(III) sorption capacity of the roots, which further confirmed the reliability of using the root zeta potential to characterize rice tolerance to Al toxicity. The results of this paper provide a new method for screening Al-tolerant rice varieties.


Subject(s)
Adaptation, Physiological/drug effects , Aluminum/toxicity , Oryza/growth & development , Plant Roots/growth & development , Soil Pollutants/toxicity , Soil/chemistry , Adaptation, Physiological/genetics , Electrochemistry , Genotype , Hydrogen-Ion Concentration , Oryza/genetics , Oryza/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Species Specificity , Surface Properties
17.
Colloids Surf B Biointerfaces ; 183: 110450, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31472388

ABSTRACT

Extracellular polymeric substances (EPS) contain a vast number of functional groups which can provide sorption sites for heavy metal cations in solution, however, the mechanisms for the interaction of EPS with various metal cations were not well understood. In this study, the sorption potential of EPS from Pseudomonas fluorescens for different cations was investigated. The changes of electrokinetic properties that occurred on the surface of EPS once they adsorbed these cations were also studied using zeta potential measurements as a function of pH and cation concentration. The adsorption data fitted Freundlich isotherm better than Langmuir and D-R isotherms. The interactions of the cations with EPS were favourable with the separation factor Kr < 1. Under different pH conditions, the zeta potential of EPS in the different cation solution followed the order: Fe(III) (at pH ≤ 5.0) > Al(III) > Cu(II) > Mn(II) > Ni(II)≈Cd(II) > Ca(II) > EPS, while with respect to the initial cation concentration, the zeta potential of EPS was in the order: Fe(III) > Al(III) > Cu(II) > Cd(II) > Ni(II)≈Mn(II)≈Ca(II). The effect of cation sorption on the surface charge of EPS increased with pH as well as cation concentration. The thermodynamic analysis demonstrated that besides the sorption of Fe which was exothermic, all the other cations were adsorbed through an endothermic process. The ΔSads revealed that most of the cations interacted with EPS through the formation of inner-sphere complexes. The ATR-FTIR analyses confirmed that complexation occurred between the cations and functional groups on the surface of EPS. The zeta potential of EPS shifted to positive value direction due to sorption of cations on EPS, indicating that the specific interactions were involved in the sorption process. This study enhances our understanding of EPS aggregation and heavy metal bio-sorption through the electrokinetic mechanism. The results will provide useful references for immobilization of heavy metals and alleviation of Al toxicity in acidic soils.


Subject(s)
Cations/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Metals, Heavy/chemistry , Pseudomonas fluorescens/chemistry , Adsorption , Cations/metabolism , Electromagnetic Phenomena , Extracellular Polymeric Substance Matrix/metabolism , Hydrogen-Ion Concentration , Kinetics , Metals, Heavy/metabolism , Oxidation-Reduction , Pseudomonas fluorescens/metabolism , Soil/chemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics
18.
Chemosphere ; 234: 43-51, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31203040

ABSTRACT

The dual role of biochar for inhibiting soil acidification induced by nitrification was determined through two-step incubation experiments in this study. Ca(OH)2 or biochar was added respectively to adjust soil pH to the same values (pH 5.15 and 5.85), and then the amended soils were incubated in the presence of urea for 70 days. The results showed that compared with Ca(OH)2 treatment, both rice straw biochar and peanut straw biochar inhibited the decrease in soil pH and the increase in exchangeable acidity during the incubation. The application of biochars suppressed soil nitrification during the incubation, and thus reduced 7.5 mmol kg-1 and 1.4 mmol kg-1 protons released from nitrification compared to Ca(OH)2 treatments. Compared with Ca(OH)2 treatment, the ammonia-oxidizing bacteria population size was decreased by 8% and 12% in rice straw biochar and peanut straw biochar treatments respectively, which was the main responsibility for the inhibited nitrification after biochar application. In addition, the application of rice straw biochar and peanut straw biochar increased soil pH buffering capacity (pHBC) respectively by 22% and 32%. The increased pHBC played the main role (75%) in inhibiting the acidification of the soil amended with peanut straw biochar, while the rice straw biochar inhibited soil acidification mainly through suppressing nitrification during the incubation. Overall, compared with lime application, biochars can inhibit soil acidification caused by urea application through suppressing the nitrification process and improving the resistance of soils to acidification. The crop residue biochars presented a longer-lasting effect on ameliorating acidic soils than mineral lime.


Subject(s)
Acids/chemistry , Charcoal/pharmacology , Nitrification , Oryza/chemistry , Soil Pollutants/analysis , Soil/chemistry , Hydrogen-Ion Concentration
19.
Colloids Surf B Biointerfaces ; 181: 215-225, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31146245

ABSTRACT

The current knowledge of bacterial migration is mainly derived from work using bare or Fe-coated quartz sands as porous media. However, mineral coatings on quartz by phyllosilicates and Al-oxides prevail in natural soils, and their effect on bacterial transport remains unknown. Herein, we systematically explored the transport of two bacterial pathogens (Escherichia coli and Staphylococcus aureus) through saturated bare quartz and those coated by kaolinite (KaoQuartz), montmorillonite (MontQuartz) or Al-oxides (AlQuartz) under various solution ionic strength (IS) and pH levels. Elevating IS or decreasing pH discouraged bacterial mobility in all cases, with one exception for the migration of S. aureus through AlQuartz at various IS levels. E. coli showed a higher mobility than S. aureus in all cases. All the three coatings, especially the Al-oxides inhibited bacterial transport through quartz. Overall, the two phyllosilicates-coated sands showed transport behaviors (mobility trends with IS, pH, and cell type) similar to those for the bare quartz which could be explained by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Nevertheless, for transport within AlQuartz, there were deviations between the observations and the DLVO predictions, probably because of the existence of non-DLVO forces such as hydrophobic and chemical interactions. More importantly, the bacterial retention was found to correlate well with the adhesion regardless of the solution condition and the bacteria and media type, thereby revealing a central role of adhesion in mediating migration through mineral-coated sands. These findings highlight the significance of mineral coating and adhesion in pathogen dissemination in natural soils.


Subject(s)
Aluminum Oxide/chemistry , Bentonite/chemistry , Escherichia coli/metabolism , Kaolin/chemistry , Staphylococcus aureus/metabolism , Bacterial Adhesion , Biological Transport , Particle Size , Porosity , Sand/chemistry , Surface Properties
20.
Environ Pollut ; 247: 136-145, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30669081

ABSTRACT

Extracellular polymeric substances (EPS) found in soils can reduce the mobility of heavy metals through the use of both electrostatic and non-electrostatic mechanisms. Their effects vary from one soil type to another. The influence of EPS from Escherichia coli on the adsorption behaviors of Cu(II) and Cd(II) by two bulk variable charge soils, Oxisol and Ultisol, was studied at constant and varied pH, and the results were compared to a constant charge Alfisol. The maximum adsorption capacities of the soils were significantly (P < 0.05) enhanced in the presence of EPS, with Cu(II) adsorption being greater. Interaction of EPS with soils made the soil surface charge more negative by neutralizing positive charges and shifting the zeta potentials in a negative direction: from -18.6 to -26.4 mV for Alfisol, +5.1 to -22.2 mV for Oxisol, and +0.3 to -28.0 mV for Ultisol at pH 5.0. The adsorption data fitted both the Freundlich and Langmuir isotherms well. Preadsorbed Cd(II) was more easily desorbed by KNO3 than preadsorbed Cu(II) from both the control and EPS treated soils. The adsorption of both metals was governed by electrostatic and non-electrostatic mechanisms, although more Cu(II) was adsorbed through the non-electrostatic mechanism. The information obtained in this study will improve our understanding of the mechanisms involved in reducing heavy metals mobility in variable charge soils and hence, their bioavailability.


Subject(s)
Cadmium/metabolism , Copper/metabolism , Escherichia coli/metabolism , Soil Pollutants/metabolism , Adsorption , Biological Availability , Cadmium/analysis , Cadmium/chemistry , Copper/analysis , Copper/chemistry , Extracellular Polymeric Substance Matrix , Hydrogen-Ion Concentration , Metals, Heavy/chemistry , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...