Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Biochem Pharmacol ; : 116236, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670437

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) negatively modulates monoaminergic transmission in the mammalian brain and participates in many psychiatric disorders. Preclinical evidence indicate that selective TAAR1 agonists have anxiolytic effects and anti-stress properties. Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by experiencing or witnessing traumatic stressors. However, it remains unknown whether TAAR1 is involved in PTSD. Here, we investigated the role of TAAR1 in two PTSD animal models, including single prolonged stress (SPS)-induced impairment of fear extinction and stress-enhanced fear learning (SEFL). SPS decreased TAAR1 mRNA levels in the prefrontal cortex and ventral tegmental area. Acute treatment of the TAAR1 partial agonist RO5263397 attenuated SPS-induced anxiety-like behavior evaluated by the elevated-plus maze test. Compared to non-stressed animals, rats that experienced SPS showed higher freezing levels in the extinction retention test, indicating an impairment of fear extinction retention after SPS exposure. Acute and chronic treatment of RO5263397 ameliorated SPS-induced impairment of fear extinction retention. In the SEFL model, compared to the No-shock group, rats that experienced severe foot shock before fear conditioning showed higher freezing levels during the tests, indicating enhanced fear learning after stress exposure. Chronic treatment of RO5263397 partially attenuated the SEFL. Moreover, chronic treatment with the selective TAAR1 full agonist RO5166017 completely prevented the SEFL. Taken together, these data showed that pharmacological activation of TAAR1 could ameliorate PTSD-like symptoms. The present study thus provides the first evidence that TAAR1 might participate in the development of PTSD, and TAAR1 agonists could be potential pharmacological treatments for this disorder.

2.
J Pharmacol Exp Ther ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670800

ABSTRACT

Recent studies suggest that amongst the GABAA receptor subtype heterogeneity, α2/α3 subunits of GABAA receptors mediate pain processing. Therefore, α2/α3-subtype selective GABAA receptor positive allosteric modulators (PAMs) may be candidate analgesics. Antinociceptive effects of α2/α3-subtype selective GABAA receptor PAMs have been reported, but the behavioral effects of these compounds have not been systematically evaluated. This study examined the behavioral effects of two α2/α3 subtype-selective GABAA receptor PAMs, KRM-II-81 and NS16085, in male rats. The antinociceptive effects of KRM-II-81 and NS16085 were examined using rat models of inflammatory (complete Freund's adjuvant) and neuropathic pain (chronic constriction injury). The effect of KRM-II-81 on affective pain was measured using the place escape/avoidance paradigm (PEAP). Rate-response of food-maintained operant responding, horizontal wire test, and the spontaneous alternation T-maze, were assessed to study the side-effect profiles of KRM-II-81 and NS16085. The benzodiazepine midazolam was used as a comparator in these studies. KRM-II-81 and NS16085 attenuated mechanical allodynia but not thermal hyperalgesia in both pain states, and their effects were attenuated by the benzodiazepine receptor antagonist flumazenil. KRM-II-81 attenuated affective pain-related behavior in the PEAP test. In the operant responding procedure and horizontal wire test, only midazolam produced significant effects at the dose that produced maximal antinociception. In the T-maze assay, only midazolam significantly decreased the percentage of alternation at an antinociceptive dose. Thus, KRM-II-81 and NS16085 but not midazolam selectively produced antinociceptive effects. Collectively, these data suggest that α2/α3-subtype selective GABAA PAMs could be a novel class of analgesics and warrant further investigation. Significance Statement This study demonstrates that α2/α3-subtype selective GABAA PAMs KRM-II-81 and NS16085 produce selective antinociceptive effects devoid of sedation, myorelaxation, cognitive impairment in two rat models of persistent pain. Unlikely classical benzodiazepines, this study supports the development of α2/α3-subtype selective GABAA PAMs as safe and novel analgesics for pain management.

3.
Pharmacol Ther ; 253: 108580, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142862

ABSTRACT

Trace amines, a group of amines expressed at the nanomolar level in the mammalian brain, can modulate monoamine transmission. The discovery of and the functional research on the trace amine-associated receptors (TAARs), especially the most well-characterized TAAR1, have largely facilitated our understanding of the function of the trace amine system in the brain. TAAR1 is expressed in the mammalian brain at a low level and widely distributed in the monoaminergic system, including the ventral tegmental area and substantial nigra, where the dopamine neurons reside in the mammalian brain. Growing in vitro and in vivo evidence has demonstrated that TAAR1 could negatively modulate monoamine transmission and play a crucial role in many psychiatric disorders, including schizophrenia, substance use disorders, sleep disorders, depression, and anxiety. Notably, in the last two decades, many studies have repeatedly confirmed the pharmacological effects of the selective TAAR1 ligands in various preclinical models of psychiatric disorders. Recent clinical trials of the dual TAAR1 and serotonin receptor agonist ulotaront also revealed a potential efficacy for treating schizophrenia. Here, we review the current understanding of the TAAR1 system and the recent advances in the elucidation of behavioral and physiological properties of TAAR1 agonists evaluated both in preclinical animal models and clinical trials. We also discuss the potential TAAR1-dependent signaling pathways and the cellular mechanisms underlying the inhibitory effects of TAAR1 activation on drug addiction. We conclude that TAAR1 is an emerging target for the treatment of psychiatric disorders.


Subject(s)
Mental Disorders , Substance-Related Disorders , Animals , Humans , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Mental Disorders/drug therapy , Mental Disorders/metabolism , Brain/metabolism , Substance-Related Disorders/metabolism , Amines/metabolism , Mammals/metabolism
4.
Psychopharmacology (Berl) ; 241(3): 479-487, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159161

ABSTRACT

RATIONALE: Increasing evidence shows that imidazoline I2 receptor agonists enhance opioid-induced analgesia, suggesting that the combination of I2 receptor agonists with opioids could be a favorable strategy for pain control. However, the effect of I2 receptor agonists on the abuse liability of opioids is unknown. This study examined the impact of the I2 receptor agonist 2-BFI on some abuse-related behavioral effects of the opioid morphine in rats. OBJECTIVES: The von Frey filament test was used to determine the antinociceptive effects of 2-BFI (intravenous, i.v.) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. IV self-administration was used to assess the reinforcing effects of 2-BFI alone and to assess the effects of non-contingent injections of 2-BFI (i.p.) on morphine self-administration. A two-lever drug discrimination paradigm in which rats were trained to discriminate 3.2 mg/kg morphine (i.p.) from saline was used to examine whether 2-BFI or another I2 receptor agonist 2-(4,5-dihydroimidazol-2-yl)quinoline hydrochloride (BU224) affected the discriminative stimulus effects of morphine. RESULTS: 2-BFI could not maintain reliable self-administration behavior in rats with no pain or CFA-treated inflammatory pain. However, pretreatment with 2-BFI (i.p.) produced dose-dependent decreases in the dose-effect curve of morphine self-administration. Both 2-BFI and BU224 did not substitute for morphine but significantly attenuated the discriminative stimulus effects of morphine. CONCLUSIONS: These results suggest that I2 receptor agonists do not enhance, but in fact appear to decrease, the abuse liability of opioids, further supporting the potential utility of I2 receptor agonist-opioid combination therapy for pain control.


Subject(s)
Benzofurans , Imidazoles , Imidazolines , Morphine , Rats , Animals , Morphine/pharmacology , Morphine/therapeutic use , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Rats, Sprague-Dawley , Pain/drug therapy , Dose-Response Relationship, Drug , Imidazoline Receptors/agonists
5.
Biomed Pharmacother ; 168: 115800, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935070

ABSTRACT

Gamma-aminobutyric acid (GABA), a non-protein-producing amino acid synthesized from the excitatory amino acid glutamate via the enzyme glutamic acid decarboxylase, is extensively found in microorganisms, plants and vertebrates, and is abundantly expressed in the spinal cord and brain. It is the major inhibitory neurotransmitter in the mammalian nervous system. GABA plays crucial roles in the regulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of insomnia and depression. As the major inhibitory neurotransmitter, GABA plays pivotal roles in the regulation of pain sensation, which is initiated by the activation of peripheral nociceptors and transmitted to the spinal cord and brain along nerves. GABA exerts these roles by directly acting on three types of receptors: ionotropic GABAA and GABAC receptors and G protein-coupled GABAB receptor. The chloride-permeable ion channel receptors GABAA and GABAC mediate fast neurotransmission, while the metabotropic GABAB receptor mediates slow effect. Different GABA receptors regulate pain sensation via different signaling pathways. Here we highlight recent updates on the involvement of specific GABA receptors and their subtypes in the process of pain sensation. Further understanding of different GABA receptors and signaling pathways in pain sensation will benefit the development of novel analgesics for pain management by targeting specific GABA receptor subtypes and signaling pathways.


Subject(s)
Analgesia , Receptors, GABA , Animals , Receptors, GABA/metabolism , Pain Management , Pain/drug therapy , gamma-Aminobutyric Acid/metabolism , Chloride Channels , Receptors, G-Protein-Coupled/metabolism , Glutamic Acid , Neurotransmitter Agents , Mammals
6.
Front Chem ; 11: 1222560, 2023.
Article in English | MEDLINE | ID: mdl-37483270

ABSTRACT

N- Demethylsinomenine (NDSM), the in vivo demethylated metabolite of sinomenine, has exhibited antinociceptive efficacy against various pain models and may become a novel drug candidate for pain management. However, no reported analytical method for quantification of N- Demethylsinomenine in a biological matrix is currently available, and the pharmacokinetic properties of N- Demethylsinomenine are unknown. In the present study, an ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method for quantification of N- Demethylsinomenine in rat plasma was developed and utilized to examine the preclinical pharmacokinetic profiles of N- Demethylsinomenine. The liquid-liquid extraction using ethyl acetate as the extractant was selected to treat rat plasma samples. The mixture of 25% aqueous phase (0.35% acetic acid-10 mM ammonium acetate buffer) and 75% organic phase (acetonitrile) was chosen as the mobile phases flowing on a ZORBAX C18 column to perform the chromatographic separation. After a 6-min rapid elution, NDSM and its internal standard (IS), metronidazole, were separated successfully. The ion pairs of 316/239 and 172/128 were captured for detecting N- Demethylsinomenine and IS, respectively, using multiple reaction monitoring (MRM) under a positive electrospray ionization (ESI) mode in this mass spectrometry analysis. The standard curve met linear requirements within the concentration range from 3 to 1000 ng/mL, and the lower limit of quantification (LLOQ) was 3 ng/mL. The method was evaluated regarding precision, accuracy, recovery, matrix effect, and stability, and all the results met the criteria presented in the guidelines for validation of biological analysis method. Then the pharmacokinetic profiles of N- Demethylsinomenine in rat plasma were characterized using this validated UPLC-MS/MS method. N- Demethylsinomenine exhibited the feature of linear pharmacokinetics after intravenous (i.v.) or intragastric (i.g.) administration in rats. After i. v. bolus at three dosage levels (0.5, 1, and 2 mg/kg), N- Demethylsinomenine showed the profiles of rapid elimination with mean half-life (T1/2Z) of 1.55-1.73 h, and extensive tissue distribution with volume of distribution (VZ) of 5.62-8.07 L/kg. After i. g. administration at three dosage levels (10, 20, and 40 mg/kg), N- Demethylsinomenine showed the consistent peak time (Tmax) of 3 h and the mean absolute bioavailability of N- Demethylsinomenine was 30.46%. These pharmacokinetics findings will aid in future drug development decisions of N- Demethylsinomenine as a potential candidate for pain analgesia.

7.
ACS Chem Neurosci ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36976755

ABSTRACT

Methamphetamine (METH) is a psychostimulant that primarily exerts its effects on the catecholamine (dopamine (DA) and norepinephrine (NE)) systems, which are implicated in drug addiction. METH exists as two distinct enantiomers, dextrorotatory (d) and levorotatory (l). In contrast to d-METH, the major component of illicit METH used to induce states of euphoria and alertness, l-METH is available without prescription as a nasal decongestant and has been highlighted as a potential agonist replacement therapy to treat stimulant use disorder. However, little is known regarding l-METH's effects on central catecholamine transmission and behavior. In this study, we used fast-scan cyclic voltammetry to elucidate how METH isomers impact NE and DA transmission in two limbic structures, the ventral bed nucleus of the stria terminalis (vBNST) and nucleus accumbens (NAc), respectively, of anesthetized rats. In addition, the dose-dependent effects of METH isomers on locomotion were characterized. d-METH (0.5, 2.0, 5.0 mg/kg) enhanced both electrically evoked vBNST-NE and NAc-DA concentrations and locomotion. Alternatively, l-METH increased electrically evoked NE concentration with minimal effects on DA regulation (release and clearance) and locomotion at lower doses (0.5 and 2.0 mg/kg). Furthermore, a high dose (5.0 mg/kg) of d-METH but not l-METH elevated baseline NE and DA concentrations. These results suggest mechanistic differences between NE and DA regulation by the METH isomers. Moreover, l-METH's asymmetric regulation of NE relative to DA may have distinct implications in behaviors and addiction, which will set the neurochemical framework for future studies examining l-METH as a potential treatment for stimulant use disorders.

8.
Journal of Integrative Medicine ; (12): 277-288, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982678

ABSTRACT

OBJECTIVE@#JieZe-1 (JZ-1), a Chinese herbal prescription, has an obvious effect on genital herpes, which is mainly caused by herpes simplex virus type 2 (HSV-2). Our study aimed to address whether HSV-2 induces pyroptosis of VK2/E6E7 cells and to investigate the anti-HSV-2 activity of JZ-1 and the effect of JZ-1 on caspase-1-dependent pyroptosis.@*METHODS@#HSV-2-infected VK2/E6E7 cells and culture supernate were harvested at different time points after the infection. Cells were co-treated with HSV-2 and penciclovir (0.078125 mg/mL) or caspase-1 inhibitor VX-765 (24 h pretreatment with 100 μmol/L) or JZ-1 (0.078125-50 mg/mL). Cell counting kit-8 assay and viral load analysis were used to evaluate the antiviral activity of JZ-1. Inflammasome activation and pyroptosis of VK2/E6E7 cells were analyzed using microscopy, Hoechst 33342/propidium iodide staining, lactate dehydrogenase release assay, gene and protein expression, co-immunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay.@*RESULTS@#HSV-2 induced pyroptosis of VK2/E6E7 cells, with the most significant increase observed 24 h after the infection. JZ-1 effectively inhibited HSV-2 (the 50% inhibitory concentration = 1.709 mg/mL), with the 6.25 mg/mL dose showing the highest efficacy (95.76%). JZ-1 (6.25 mg/mL) suppressed pyroptosis of VK2/E6E7 cells. It downregulated the inflammasome activation and pyroptosis via inhibiting the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (P < 0.001) and interferon-γ-inducible protein 16 (P < 0.001), and their interactions with apoptosis-associated speck-like protein containing a caspase recruitment domain, and reducing cleaved caspase-1 p20 (P < 0.01), gasdermin D-N (P < 0.01), interleukin (IL)-1β (P < 0.001), and IL-18 levels (P < 0.001).@*CONCLUSION@#JZ-1 exerts an excellent anti-HSV-2 effect in VK2/E6E7 cells, and it inhibits caspase-1-dependent pyroptosis induced by HSV-2 infection. These data enrich our understanding of the pathologic basis of HSV-2 infection and provide experimental evidence for the anti-HSV-2 activity of JZ-1. Please cite this article as: Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med. 2023; 21(3): 277-288.


Subject(s)
Humans , Caspase 1/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Simplexvirus/metabolism , Drugs, Chinese Herbal/pharmacology , Herpes Simplex/drug therapy
9.
Journal of Experimental Hematology ; (6): 1290-1295, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009983

ABSTRACT

OBJECTIVE@#To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells.@*METHODS@#Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay.@*RESULTS@#Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells.@*CONCLUSION@#Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.


Subject(s)
Humans , Cyclin B1/pharmacology , Cell Proliferation , Methionine/pharmacology , Cell Cycle , Apoptosis , Leukemia, Myeloid, Acute , Cell Division , Cell Cycle Proteins , Jurkat Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , HL-60 Cells
10.
Psychopharmacology (Berl) ; 239(10): 3345-3353, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36056214

ABSTRACT

RATIONALE: Trace amine-associated receptor 1 (TAAR1) is the best-studied receptor of trace amines, a group of biogenic amines expressed at a relatively low level in the mammalian brain. Growing evidence suggests that TAAR1 plays a critical role in various neuropsychiatric disorders. Given that selective TAAR1 agonists were shown to produce pro-cognition and antipsychotic-like effects as well as to suppress drug use and relapse, they have been proposed to be novel treatments for mental disorders such as schizophrenia and addiction. However, the aversive effects of selective TAAR1 agonists remain largely unknown. OBJECTIVES: Here, we evaluated whether the selective TAAR1 full agonist RO5166017 and partial agonist RO5263397 could induce conditioned taste aversion (CTA). RESULTS: We found that RO5166017 and RO5263397 produced significant aversions to both saccharin and NaCl taste novelty. Furthermore, RO5166017 produced CTA to saccharin in TAAR1 heterozygous knockout (taar1±) and wild-type rats but not in TAAR1 homozygous knockout rats (taar1-/-), suggesting that TAAR1 was sufficient for the taste aversive stimulus property of RO5166017. CONCLUSIONS: Taken together, our data indicate that selective TAAR1 agonists could produce strong CTA. Our study urges careful evaluations of the aversive effects of TAAR1 agonists before translating them to clinical use for the treatment of mental disorders.


Subject(s)
Antipsychotic Agents , Receptors, G-Protein-Coupled , Taste Perception , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Aversive Agents/chemistry , Aversive Agents/pharmacology , Humans , Mammals , Oxazoles , Phenethylamines/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Saccharin/pharmacology , Sodium Chloride , Taste/drug effects , Taste Perception/drug effects
11.
Psychopharmacology (Berl) ; 239(11): 3539-3550, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36098762

ABSTRACT

Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.


Subject(s)
Analgesics, Opioid , Chronic Pain , Rats , Animals , Male , Analgesics, Opioid/pharmacology , Oxycodone/pharmacology , Nociception , Motivation , Freund's Adjuvant , Early Growth Response Protein 3
12.
Eur J Med Chem ; 243: 114741, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36126387

ABSTRACT

Blockade of lysophosphatidic acid receptor 5 (LPA5) by a recently reported antagonist AS2717638 (2) attenuated inflammatory and neuropathic pains, although it showed moderate in vivo efficacy and its structure-activity relationships and the ADME properties are little studied. We therefore designed and synthesized a series of isoquinolone derivatives and evaluated their potency in LPA5 calcium mobilization and cAMP assays. Our results show that substituted phenyl groups or bicyclic aromatic rings such as benzothiophenes or benzofurans are tolerated at the 2-position, 4-substituted piperidines are favored at the 4-position, and methoxy groups at the 6- and 7-positions are essential for activity. Compounds 65 and 66 showed comparable in vitro potency, excellent selectivity against LPA1-LPA4 and >50 other GPCRs, moderate metabolic stability, and high aqueous solubility and brain permeability. Both 65 and 66 significantly attenuated nociceptive hypersensitivity at lower doses than 2 and had longer-lasting effects in an inflammatory pain model, and 66 also dose-dependently reduced mechanical allodynia in the chronic constriction injury model and opioid-induced hyperalgesia at doses that had no effect on the locomotion in rats. These results suggest that these isoquinolone derivatives as LPA5 antagonists are of promise as potential analgesics.


Subject(s)
Isoquinolines , Neuralgia , Receptors, Lysophosphatidic Acid , Animals , Rats , Analgesics/pharmacology , Analgesics/therapeutic use , Hyperalgesia , Neuralgia/chemically induced , Neuralgia/drug therapy , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Structure-Activity Relationship , Isoquinolines/chemistry , Isoquinolines/pharmacology
13.
Molecules ; 27(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684506

ABSTRACT

Oxypeucedanin, a furanocoumarin extracted from many traditional Chinese herbal medicines, has a variety of pharmacological effects. However, the independent pharmacokinetic characteristics and bioavailability of this compound remains elusive. In this study, a rapid, sensitive, and selective method using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) was developed for evaluating the intravenous and oral pharmacokinetics of oxypeucedanin. After intravenous administration of oxypeucedanin (2.5, 5, and 10 mg/kg), and intragastric administration of oxypeucedanin (20 mg/kg), blood samples were collected periodically from the tail vein. The plasma concentration-time curves were plotted, and the pharmacokinetic parameters were calculated using a non-compartmental model analysis. After intravenous administration of oxypeucedanin (single dosing at 2.5, 5, and 10 mg/kg) to rats, the pharmacokinetics fit the linear kinetics characteristics, which showed that some parameters including average elimination half-life (T1/2Z of 0.61~0.66 h), mean residence time (MRT of 0.62~0.80 h), apparent volume of distribution (VZ of 4.98~7.50 L/kg), and systemic clearance (CLZ of 5.64~8.55 L/kg/h) are dose-independent and the area under concentration-time curve (AUC) increased in a dose-proportional manner. Single oral administration of oxypeucedanin (20 mg/kg) showed poor and slow absorption with the mean time to reach the peak concentration (Tmax) of 3.38 h, MRT of 5.86 h, T1/2Z of 2.94 h, and a mean absolute bioavailability of 10.26% in rats. These results provide critical information for a better understanding of the pharmacological effect of oxypeucedanin, which will facilitate its research and development.


Subject(s)
Furocoumarins , Tandem Mass Spectrometry , Administration, Intravenous , Administration, Oral , Animals , Biological Availability , Chromatography, High Pressure Liquid , Rats , Tandem Mass Spectrometry/methods
14.
Handb Exp Pharmacol ; 276: 275-290, 2022.
Article in English | MEDLINE | ID: mdl-35434747

ABSTRACT

Drug addiction is a chronic brain disease characterized by compulsive drug-seeking and drug-taking behaviors despite the major negative consequences. Current well-established neuronal underpinnings of drug addiction have promoted the substantial progress in understanding this disorder. However, non-neuronal mechanisms of drug addiction have long been underestimated. Fortunately, increased evidence indicates that neuroimmune system, especially Toll-like receptor 4 (TLR4) signaling, plays an important role in the different stages of drug addiction. Drugs like opioids, psychostimulants, and alcohol activate TLR4 signaling and enhance the proinflammatory response, which is associated with drug reward-related behaviors. While extensive studies have shown that inhibition of TLR4 attenuated drug-related responses, there are conflicting findings implicating that TLR4 signaling may not be essential to drug addiction. In this chapter, preclinical and clinical studies will be discussed to further evaluate whether TLR4-based neuroimmune pharmacotherapy can be used to treat drug addiction. Furthermore, the possible mechanisms underlying the effects of TLR4 inhibition in modulating drug-related behaviors will also be discussed.


Subject(s)
Drug-Seeking Behavior , Substance-Related Disorders , Toll-Like Receptor 4 , Analgesics, Opioid/pharmacology , Drug-Seeking Behavior/drug effects , Ethanol/pharmacology , Humans , Signal Transduction , Substance-Related Disorders/drug therapy , Substance-Related Disorders/genetics , Toll-Like Receptor 4/antagonists & inhibitors
15.
Adv Pharmacol ; 93: 373-401, 2022.
Article in English | MEDLINE | ID: mdl-35341572

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) is the best characterized receptor selectively activated by trace amines. It is broadly expressed in the monoaminergic system in the brain including ventral tegmental area (VTA), nucleus accumbens (NAc), dorsal raphe (DR) and substantial nigra (SN). Extensive studies have suggested that TAAR1 plays an important role in the modulation of monoaminergic system, especially dopamine (DA) transmission which may underlie the mechanisms by which TAAR1 interventions affect drug abuse-like behaviors. TAAR1 activation inhibits the rewarding and reinforcing effects of drugs from different classes including psychostimulants, opioid and alcohol as well as drug-induced increase in DA accumulation. The mechanisms of TAAR1's function in mediating drug abuse-like behaviors are not clear. However, it is hypothesized that TAAR1 interaction with DA transporter (DAT) and dopamine D2 receptor (D2) and the subsequent modulation of cellular cascades may contribute to the effects of TAAR1 in regulating drug abuse. Further studies are needed to investigate the role of TAAR1 in other drugs of abuse-related behaviors and its safety and efficacy for prolonged medications. Together, TAAR1 inhibits drug-induced DA transmission and drug abuse-related behaviors. Therefore, TAAR1 may be a promising therapeutic target for the treatment of drug addiction.


Subject(s)
Central Nervous System Stimulants , Substance-Related Disorders , Central Nervous System Stimulants/adverse effects , Dopamine , Humans , Receptors, G-Protein-Coupled , Substance-Related Disorders/drug therapy
16.
Adv Pharmacol ; 93: xiii-xiv, 2022.
Article in English | MEDLINE | ID: mdl-35341575
17.
Mol Psychiatry ; 27(4): 2136-2145, 2022 04.
Article in English | MEDLINE | ID: mdl-35079125

ABSTRACT

Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Cocaine/pharmacology , Cocaine-Related Disorders/drug therapy , Cocaine-Related Disorders/metabolism , Drug-Seeking Behavior , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled , Recurrence , Self Administration
18.
Addict Biol ; 27(1): e13075, 2022 01.
Article in English | MEDLINE | ID: mdl-34170054

ABSTRACT

Nicotine addiction is a leading avoidable brain disorder globally. Although nicotine induces a modest reinforcing effect, which is important for the initial drug use, the transition from nicotine use to nicotine addiction involves the mechanisms responsible for the negative consequences of drug abstinence. Recent study suggested that trace amine-associated receptor 1 (TAAR1) is a promising pharmacological target for the modulation of positive reinforcing effects of nicotine. However, whether TAAR1 plays a part in the negative reinforcement of nicotine withdrawal remains to be determined. Here, using a long-access (LA) self-administration model, we investigated whether LA rats show increased nicotine intake and withdrawal symptoms in comparison with saline and ShA rats and then tested the effect of TAAR1 partial agonist RO5263397 on nicotine withdrawal effects. We found that rats from long-access group showed significant abstinence-induced anxiety-like behaviour, mechanic hypersensitivity, increased number of precipitated withdrawal signs and higher motivation for the drug, while rats from short-access did not differ from saline group. TAAR1 partial agonist RO5263397 significantly reduced the physical and motivational withdrawal effects of nicotine in LA rats, as reflected by increased time spent on the open arm in the elevated plus maze (EPM) test, normalized paw withdrawal threshold, decreased withdrawal signs and motivation to self-administer nicotine. This study indicates that activation of TAAR1 attenuates the negative-reinforcing effects of nicotine withdrawal and further suggests TAAR1 as a promising target to treat nicotine addiction.


Subject(s)
Nicotine/pharmacology , Receptors, G-Protein-Coupled/metabolism , Substance Withdrawal Syndrome/metabolism , Tobacco Use Disorder/metabolism , Animals , Behavior, Animal/drug effects , Male , Oxazoles , Rats , Reinforcement, Psychology , Self Administration
19.
J Med Chem ; 65(1): 257-270, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34929081

ABSTRACT

We have shown that CB1 receptor negative allosteric modulators (NAMs) attenuated the reinstatement of cocaine-seeking behaviors in rats. In an effort to further define the structure-activity relationships and assess the druglike properties of the 3-(4-chlorophenyl)-1-(phenethyl)urea-based CB1 NAMs that we recently reported, we introduced substituents of different electronic properties and sizes to the phenethyl group and evaluated their potency in CB1 calcium mobilization, cAMP, and GTPγS assays. We found that 3-position substitutions such as Cl, F, and Me afforded enhanced CB1 potency, whereas 4-position analogues were generally less potent. The 3-chloro analogue (31, RTICBM-189) showed no activity at >50 protein targets and excellent brain permeation but relatively low metabolic stability in rat liver microsomes. Pharmacokinetic studies in rats confirmed the excellent brain exposure of 31 with a brain/plasma ratio Kp of 2.0. Importantly, intraperitoneal administration of 31 significantly and selectively attenuated the reinstatement of the cocaine-seeking behavior in rats without affecting locomotion.


Subject(s)
Behavior, Animal/drug effects , Brain/metabolism , Cocaine-Related Disorders/drug therapy , Cocaine/toxicity , Drug-Seeking Behavior/drug effects , Phenylurea Compounds/chemistry , Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation , Animals , Brain/drug effects , Cocaine-Related Disorders/etiology , Cocaine-Related Disorders/pathology , Male , Mice , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/toxicity
20.
Brain Behav Immun ; 101: 37-48, 2022 03.
Article in English | MEDLINE | ID: mdl-34958862

ABSTRACT

Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.


Subject(s)
Drug-Seeking Behavior , Interleukin-1 Receptor-Associated Kinases , Nucleus Accumbens , Opioid-Related Disorders , Analgesics, Opioid/pharmacology , Animals , Cues , Extinction, Psychological , Interleukin-1 Receptor-Associated Kinases/metabolism , Male , Morphine/pharmacology , Protein Serine-Threonine Kinases , Rats , Rats, Sprague-Dawley , Toll-Like Receptor 4
SELECTION OF CITATIONS
SEARCH DETAIL
...