Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Anim Nutr ; 18: 367-379, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39290858

ABSTRACT

This study was conducted to investigate potential regulatory mechanisms of feed efficiency (FE) in sheep by linking rumen microbiota with its host by the multi-omics analysis. One hundred and ninety-eight hybrid female sheep (initial body weight = 30.88 ± 4.57 kg; 4-month-old) were selected as candidate sheep. Each test sheep was fed in an individual pen for 60 days, and the residual feed intake (RFI) was calculated. The ten candidate sheep with the highest RFI were divided into the Low-FE group, and the ten with the lowest RFI were divided into the High-FE group, all selected for sample collection. The RFI, average daily gain and average daily feed intake were highly significantly different between the two experimental groups (P < 0.05). Compared with Low-FE group, the insulin-like growth factor-1 and very low-density lipoprotein in serum and the propionate in rumen significantly increased in High-FE group (P < 0.01), but the acetate:propionate ratio in rumen significantly decreased in High-FE group (P = 0.034). Metagenomics revealed Selenomonas ruminantium, Selenomonas sp. and Faecalibacterium prausnitzi i were key bacteria, and increased abundance of the genes encoding the enzymes for cellulose degradation and production of propionate in High-FE group. The results of proteomics and section showed the rumen papilla length (P < 0.001) and expression of carbonic anhydrase and Na+/K+-ATPase were significantly higher in High-FE group (P < 0.05). On the other hand, the acetyl-CoA content significantly increased in the liver of High-FE group (P = 0.002). The relative expression levels of insulin-like growth factor-1 and apolipoprotein A4 genes were significantly up-regulated in the liver of High-FE group (P < 0.01), but relative expression level of monoacylglycerol O-acyltransferase 3 gene was significantly down-regulated (P = 0.037). These findings provide the mechanism by which the collaborative interaction between rumen microbiota fermentation and host uptake and metabolism of fermentation products impacts feed efficiency traits in sheep.

2.
Front Plant Sci ; 15: 1396389, 2024.
Article in English | MEDLINE | ID: mdl-39239196

ABSTRACT

Introduction: Among cultivated tea plants (Camellia sinensis), only four mitogenomes for C. sinensis var. assamica (CSA) have been reported so far but none for C. sinensis var. sinensis (CSS). Here, two mitogenomes of CSS (CSSDHP and CSSRG) have been sequenced and assembled. Methods: Using a combination of Illumina and Nanopore data for the first time. Comparison between CSS and CSA mitogenomes revealed a huge heterogeneity. Results: The number of the repetitive sequences was proportional to the mitogenome size and the repetitive sequences dominated the intracellular gene transfer segments (accounting for 88.7%- 92.8% of the total length). Predictive RNA editing analysis revealed that there might be significant editing in NADH dehydrogenase subunit transcripts. Codon preference analysis showed a tendency to favor A/T bases and T was used more frequently at the third base of the codon. ENc plots analysis showed that the natural selection play an important role in shaping the codon usage bias, and Ka/Ks ratios analysis indicated Nad1 and Sdh3 genes may have undergone positive selection. Further, phylogenetic analysis shows that six C. sinensis clustered together, with the CSA and CSS forming two distinct branches, suggesting two different evolutionary pathway. Discussion: Altogether, this investigation provided an insight into evolution and phylogeny relationship of C. sinensis mitogenome, thereby enhancing comprehension of the evolutionary patterns within C. sinensis species.

3.
Cell Mol Gastroenterol Hepatol ; : 101402, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39271015

ABSTRACT

BACKGROUND & AIMS: XBP1, most conserved transcription factor of endoplasmic reticulum (ER) stress, plays important roles in physiological and pathological settings and has profound effects on disease progression and prognosis, so it's necessary to investigate XBP1 in macrophage-originated sterile inflammation during liver ischemia/reperfusion injury (IRI). Macrophage XBP1 expression and liver injury are analyzed in patients undergoing ischemia-related hepatectomy. METHODS: A myeloid-specific male XBP1-knockout (XBP1M-KO) strain is created for function and mechanism of XBP1 on macrophage-derived sterile inflammation in murine liver IRI with in-vitro parallel research. Macrophages co-cultured with hypoxia-treated hepatocytes are applied to investigate impact of XBP1 in vitro, with analysis of RNA sequencing and databases. RESULTS: Clinically, macrophage XBP1 expression significantly increases in ischemic liver tissues and positively correlates with liver injury after hepatectomy. Less hepatocellular damage is presented in XBP1M-KO mice than in XBP1-proficient (XBP1FL/FL) controls. In vitro, XBP1 deficiency inhibits sterile inflammation and migration in macrophages co-cultured with hypoxia-treated hepatocytes. Analysis of RNA sequencing and databases determines Metallothionein 2 (MT2) as XBP1 target gene, negatively regulated by binding with its promoter. XBP1 deficiency increases MT2 and IKBα expression, but inhibits NF-κB-p65 phosphorylation, markedly neutralizing XBP1M-KO-related benefits by promoting sterile inflammation during liver IRI. CONCLUSIONS: XBP1 promotes macrophage-originated sterile inflammation, increases liver IRI by binding to MT2 promoter, and regulates MT2/NF-κB pathway, potentially therapeutic for clinical liver IRI.

4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 565-574, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39223021

ABSTRACT

Hymenopteran insect stings are a risk factor that cannot be ignored for the people allergic to hymenopteran venoms.In China,the current diagnostic tools cannot provide accurate information to identify sensitized insects,thus affecting clinical diagnosis and treatment.Honeybee is a common hymenopteran insect.Due to its wide distribution,large number,and complex venom composition,researchers have carried out recombination schemes for the main allergens of honeybee venom,laying a theoretical foundation for the detection of allergens.The development of diagnostic technologies for allergen components can accurately detect bee venom allergens,providing a new set of clinical diagnosis and treatment schemes for the population allergic to bee venom.


Subject(s)
Allergens , Bee Venoms , Bee Venoms/immunology , Allergens/analysis , Allergens/immunology , Animals , Humans , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Bees/immunology
5.
Arch Virol ; 169(9): 186, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180681

ABSTRACT

NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) employs complex strategies to synthesize subgenomic RNAs (sgRNAs); however, their plasticity and temporal dynamics remain largely unexplored. Using next-generation sequencing (NGS), we examined the high-resolution landscape of the PRRSV subgenome, highlighting considerable heterogeneity in temporal kinetics and transcriptional control and revealing extensive coordination between TRSL-dependent and TRSL-independent sgRNAs. In addition, a comprehensive re-annotation of transcription regulatory sequence (TRS) locations was conducted, clarifying that their usage involved canonical, alternative, and non-canonical splicing events for annotated genes. These insights emphasize that the coding of genetic material in PRRSV is far more intricate than previously anticipated. Collectively, the altered sgRNA phenotype offers distinctive insights into PRRSV transcription and gives additional impetus for mining the functional short- and long-range RNA-RNA interactome at active viral replication sites.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Viral , Transcription, Genetic , Virus Replication , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Swine , RNA, Viral/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Kinetics , Cell Line
6.
World Allergy Organ J ; 17(6): 100922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966604

ABSTRACT

Background: Peach allergy is common food allergen. Allergen components-specific antibodies of different isotypes in peach-allergy patients are poorly studied. Factors other than Pru p 3-sIgE levels may be related to severe symptoms. Objective: To evaluated peach component-specific-IgE, IgG1, and IgG4 characteristics in individuals with and without peach allergy, and Pru p 3-sIgE affinity in patients with different clinical symptoms. Methods: Fifteen healthy controls and 32 peach-allergy patients were enrolled. sIgE, sIgG1, and sIgG4 to 5 Escherichia coli-expressed peach-allergen components were determined by enzyme-linked immunosorbent assays. Pru p 3-sIgE affinity was measured in Pru p 3-sIgE-positive patients, using immunoadsorbance. Results: Patients were divided into oral allergy syndrome (OAS) and peach-induced anaphylaxis (PIA) groups. Serum Pru p 1-, Pru p 2-, Pru p 3-, Pru p 4-, and Pru p 7-sIgG1s were detected. Pru p 1- and Pru p 2-sIgG1 levels were higher in healthy controls, but Pru p 3-sIgG1 levels were significantly higher in peach-allergy patients. Pru p 1-, Pru p 3-, and Pru p 4-sIgG4-positivity was significantly greater among patients than among controls. Pru p 3 was the predominant allergen in peach-allergy patients. Allergen-sIgG1 and sIgG4 were similar between OAS and PIA patients. Pru p 3-sIgE levels were significantly higher in PIA patients, but Pru p 3-sIgE-positivity was similar in both groups. In Pru p 3-sIgE-positive patients, Pru p 3-sIgE affinity was significantly higher in PIA than OAS patients. Conclusions: Allergen-sIgG1 was associated with allergen exposure. Both Pru p 3-sIgE levels and affinity are key factors in severe peach-allergy patients.

7.
J Transl Med ; 22(1): 645, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982511

ABSTRACT

BACKGROUND: Cancer-associated fibroblast (CAF)-cancer cell crosstalk (CCCT) plays an important role in tumor microenvironment shaping and immunotherapy response. Current prognostic indexes are insufficient to accurately assess immunotherapy response in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to develop a CCCT-related gene prognostic index (CCRGPI) for assessing the prognosis and response to immune checkpoint inhibitor (ICI) therapy of HNSCC patients. METHODS: Two cellular models, the fibroblast-cancer cell indirect coculture (FCICC) model, and the fibroblast-cancer cell organoid (FC-organoid) model, were constructed to visualize the crosstalk between fibroblasts and cancer cells. Based on a HNSCC scRNA-seq dataset, the R package CellChat was used to perform cell communication analysis to identify gene pairs involved in CCCT. Least absolute shrinkage and selection operator (LASSO) regression was then applied to further refine the selection of these gene pairs. The selected gene pairs were subsequently subjected to stepwise regression to develop CCRGPI. We further performed a comprehensive analysis to determine the molecular and immune characteristics, and prognosis associated with ICI therapy in different CCRGPI subgroups. Finally, the connectivity map (CMap) analysis and molecular docking were used to screen potential therapeutic drugs. RESULTS: FCICC and FC-organoid models showed that cancer cells promoted the activation of fibroblasts into CAFs, that CAFs enhanced the invasion of cancer cells, and that CCCT was somewhat heterogeneous. The CCRGPI was developed based on 4 gene pairs: IGF1-IGF1R, LGALS9-CD44, SEMA5A-PLXNA1, and TNXB-SDC1. Furthermore, a high CCRGPI score was identified as an adverse prognostic factor for overall survival (OS). Additionally, a high CCRGPI was positively correlated with the activation of the P53 pathway, a high TP53 mutation rate, and decreased benefit from ICI therapy but was inversely associated with the abundance of various immune cells, such as CD4+ T cells, CD8+ T cells, and B cells. Moreover, Ganetespib was identified as a potential drug for HNSCC combination therapy. CONCLUSIONS: The CCRGPI is reliable for predicting the prognosis and immunotherapy response of HSNCC patients and may be useful for guiding the individualized treatment of HNSCC patients.


Subject(s)
Cancer-Associated Fibroblasts , Head and Neck Neoplasms , Machine Learning , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Prognosis , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Cell Communication/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male , Treatment Outcome , Cell Line, Tumor , Female
8.
J Pain ; 25(10): 104588, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38844152

ABSTRACT

Chronic pain often coincides with changes in gut microbiota composition. Yet, the role of gut microbiota in bone cancer pain (BCP) is still not fully understood. This study investigated the role of gut microbiota in BCP and the effect of oxymatrine (OMT) on gut microbiota in BCP. A BCP mice model was developed to assess gut microbiota composition, serum and brain tissue butyric acid levels, and blood-brain barrier (BBB) permeability. Microbiota transplantation was used to restore gut microbiota, and the effect of Clostridium butyricum or sodium butyrate (NaB) supplementation on pain-related behaviors and BBB integrity was evaluated. The potential benefits of OMT on gut microbiota composition, peroxisome proliferator-activated receptor gamma (PPARγ)/cyclooxygenase-2 (COX-2) signaling, BBB integrity, and pain-related behaviors were also explored. BCP significantly altered gut microbiota composition and reduced serum and brain tissue butyric acid levels. Additionally, BBB permeability increased considerably in the BCP group compared with sham and control mice. Microbiota transplantation, as well as C butyricum or NaB supplementation, ameliorated pain-related behaviors and BBB integrity; the supplementation of C butyricum or NaB boosted brain-tight-junction protein expression, potentially through modulating PPARγ/COX-2 signaling. OMT influenced gut microbiota composition and regulated PPARγ/COX-2 signaling in the BCP model, improving pain-related behaviors and BBB integrity. BCP affects gut microbiota composition and butyric acid levels. Modulating gut microbiota and butyric acid levels through transplantation or supplementation may alleviate BCP. OMT shows potential as a treatment by altering gut microbiota composition and regulating PPARγ/COX-2 signaling. These findings provide new insights into BCP pathophysiology and possible treatments. PERSPECTIVE: This study explores the impact of gut microbiota on BCP. Microbiota transplantation alleviates BCP and enhances BBB integrity. Also, C butyricum or NaB improves BBB via PPARγ/COX-2. OMT, a BCP treatment, modifies microbiota by regulating PPARγ/COX-2, in turn improving pain and BBB integrity. These findings suggest a therapeutic approach, emphasizing clinical relevance in targeting gut microbiota and restoring butyric acid levels.


Subject(s)
Alkaloids , Gastrointestinal Microbiome , PPAR gamma , Quinolizines , Animals , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Mice , Alkaloids/pharmacology , Alkaloids/administration & dosage , PPAR gamma/metabolism , Quinolizines/pharmacology , Quinolizines/administration & dosage , Cancer Pain/drug therapy , Cancer Pain/metabolism , Cancer Pain/therapy , Cyclooxygenase 2/metabolism , Butyric Acid/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Disease Models, Animal , Female , Clostridium butyricum/drug effects , Clostridium butyricum/physiology , Pain Management/methods , Matrines
9.
Front Microbiol ; 15: 1417993, 2024.
Article in English | MEDLINE | ID: mdl-38841053

ABSTRACT

Streptococcus equi subsp. zooepidemicus (SEZ) is a significant zoonotic pathogen that causes septicemia, meningitis, and mastitis in domestic animals. Recent reports have highlighted high-mortality outbreaks among swine in the United States. Traditionally recognized for its adaptive immune functions, the CRISPR-Cas system has also been implicated in gene regulation, bacterial pathophysiology, virulence, and evolution. The Type I-C CRISPR-Cas system, which is prevalent in SEZ isolates, appears to play a pivotal role in regulating the pathogenicity of SEZ. By constructing a Cas3 mutant strain (ΔCas3) and a CRISPR-deficient strain (ΔCRISPR), we demonstrated that this system significantly promotes biofilm formation and cell adhesion. However, the deficiency in the CRISPR-Cas system did not affect bacterial morphology or capsule production. In vitro studies showed that the CRISPR-Cas system enhances pro-inflammatory responses in RAW264.7 cells. The ΔCas3 and ΔCRISPR mutant strains exhibited reduced mortality rates in mice, accompanied by a decreased bacterial load in specific organs. RNA-seq analysis revealed distinct expression patterns in both mutant strains, with ΔCas3 displaying a broader range of differentially expressed genes, which accounted for over 70% of the differential genes observed in ΔCRISPR. These genes were predominantly linked to lipid metabolism, the ABC transport system, signal transduction, and quorum sensing. These findings enhance our understanding of the complex role of the CRISPR-Cas system in SEZ pathogenesis and provide valuable insights for developing innovative therapeutic strategies to combat infections.

10.
Acta Biomater ; 181: 202-221, 2024 06.
Article in English | MEDLINE | ID: mdl-38692468

ABSTRACT

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.


Subject(s)
Dental Pulp , Hydrogels , Regeneration , Stem Cells , Dental Pulp/cytology , Animals , Hydrogels/chemistry , Swine , Regeneration/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Cell Differentiation/drug effects , Regenerative Endodontics/methods , Humans , Tissue Engineering/methods
11.
Microb Pathog ; 192: 106682, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750776

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly transmissible disease of significant concern in the pig industry. Previous studies have demonstrated that the XM-2020 strain (a lineage 1.8 PRRSV IA/2012/NADC30) can induce special hemorrhagic injury in the small intestines. However, the specific mechanism underlying this injurious effect remains incompletely understood. In this study, we examined the pathogenic properties of XM-2020 and YC-2020 strains (a lineage 1.5 PRRSV IA/2014/NADC34) in piglets. Animal pathogenic tests revealed that with either Lineage 1 PRRSVs strains XM-2020 or YC-2020 demonstrated pronounced intestinal hemorrhage and suppression of peripheral immunological organs, comparing to JXA1 infection. Transcriptome analysis of diseased small intestines unveiled that PRRSV infection stimulated oxidative and inflammatory reactions. Remarkably, we also observed activation of the complement system alongside a notable down-regulation of complement and coagulation cascade pathways in the Lineage 1 PRRSVs infection group. Based on these findings, we propose that the primary mechanism driving the hemorrhagic injury of the small intestine caused by Lineage 1 PRRSVs is the suppression of complement and coagulation cascades resulting from immunosuppression. This discovery deepens our understanding of the pathogenicity of PRRSV in the small intestine and provides promising ways out for the development of innovative strategies aimed at controlling PRRSV.


Subject(s)
Complement System Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Complement System Proteins/immunology , Complement System Proteins/metabolism , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Blood Coagulation , Intestine, Small/virology , Intestine, Small/pathology , Intestines/virology , Intestines/pathology , Gene Expression Profiling , Hemorrhage
12.
J Med Chem ; 67(11): 9406-9430, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38751194

ABSTRACT

Targeting NLRP3 inflammasome with inhibitors is a novel strategy for NLRP3-driven diseases. Herein, hit compound 5 possessing an attractive skeleton was identified from our in-house database of oridonin, and then a potential lead compound 32 was obtained by optimization of 5, displaying two-digit nanomolar inhibition on NLRP3. Moreover, compound 32 showed enhanced safety index (SI) relative to oridonin (IC50 = 77.2 vs 780.4 nM, SI = 40.5 vs 8.5) and functioned through blocking ASC oligomerization and interaction of NLRP3-ASC/NEK7, thereby suppressing NLRP3 inflammasome assembly and activation. Furthermore, diverse agonists-induced activations of NLRP3 could be impeded by compound 32 without altering NLRC4 or AIM2 inflammasome. Crucially, compound 32 possessed tolerable pharmaceutical properties and significant anti-inflammatory activity in MSU-induced gouty arthritis model. Therefore, this work enriched the SAR of NLRP3 inflammasome inhibitors and provided a potential candidate for the treatment of NLRP3-associated diseases.


Subject(s)
Anti-Inflammatory Agents , Diterpenes, Kaurane , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/therapeutic use , Diterpenes, Kaurane/chemical synthesis , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemical synthesis , Structure-Activity Relationship , Male , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Mice, Inbred C57BL , NIMA-Related Kinases/antagonists & inhibitors , NIMA-Related Kinases/metabolism
13.
Sensors (Basel) ; 24(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38676200

ABSTRACT

In diverse realms of research, such as holographic optical tweezer mechanical measurements, colloidal particle motion state examinations, cell tracking, and drug delivery, the localization and analysis of particle motion command paramount significance. Algorithms ranging from conventional numerical methods to advanced deep-learning networks mark substantial strides in the sphere of particle orientation analysis. However, the need for datasets has hindered the application of deep learning in particle tracking. In this work, we elucidated an efficacious methodology pivoted toward generating synthetic datasets conducive to this domain that resonates with robustness and precision when applied to real-world data of tracking 3D particles. We developed a 3D real-time particle positioning network based on the CenterNet network. After conducting experiments, our network has achieved a horizontal positioning error of 0.0478 µm and a z-axis positioning error of 0.1990 µm. It shows the capability to handle real-time tracking of particles, diverse in dimensions, near the focal plane with high precision. In addition, we have rendered all datasets cultivated during this investigation accessible.

14.
Article in English | MEDLINE | ID: mdl-38621188

ABSTRACT

We thoroughly investigated the anharmonic lattice dynamics and microscopic mechanisms of the thermal and electronic transport characteristics in orthorhombic o-CsCu5S3 at the atomic level. Taking into account the phonon energy shifts and the wave-like tunneling phonon channel, we predict an ultralow κL of 0.42 w/mK at 300 K with an extremely weak temperature dependence following ∼T-0.33. These findings agree well with experimental values along with the parallel to the Bridgman growth direction. The κL in o-CsCu5S3 is suppressed down to the amorphous limit, primarily due to the unconventional Cu-S bonding induced by the p-d hybridization antibonding state coupled with the stochastic oscillation of Cs atoms. The nonstandard temperature dependence of κL can be traced back to the critical or dominant role of wave-like tunneling of phonon contributions in thermal transport. Moreover, the p-d hybridization of Cu(3)-S bonding results in the formation of a valence band with "pudding-mold" and high-degeneracy valleys, ensuring highly efficient electron transport characteristics. By properly adjusting the carrier concentration, excellent thermoelectric performance is achieved with a maximum thermoelectric conversion efficiency of 18.4% observed at 800 K in p-type o-CsCu5S3. Our work not only elucidates the anomalous electronic and thermal transport behavior in the copper-based chalcogenide o-CsCu5S3 but also provides insights for manipulating its thermal and electronic properties for potential thermoelectric applications.

15.
Addict Biol ; 29(3): e13382, 2024 03.
Article in English | MEDLINE | ID: mdl-38488467

ABSTRACT

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces addictive behaviour by stimulating increased dopamine release in the nucleus accumbens (NAc). The sarco/endoplasmic reticulum calcium ion transport ATPases (SERCA or ATP2A) is a calcium ion (Ca2+) pump in the endoplasmic reticulum (ER) membrane. SERCA2b is a SERCA subtype mainly distributed in the central nervous system. This study used conditioned place preference (CPP), a translational drug reward model, to observe the effects of SERCA and SERCA2b on METH-CPP in mice. Result suggested that the activity of SERCA was significantly decreased in NAc after METH-CPP. Intraperitoneal SERCA agonist CDN1163 injection or bilateral CDN1163 microinjection in the NAc inhibited METH-CPP formation. SERCA2b overexpression by the Adeno-associated virus can reduce the DA release of NAc and inhibit METH-CPP formation. Although microinjection of SERCA inhibitor thapsigargin in the bilateral NAc did not significantly aggravate METH-CPP, interference with SERCA2b expression in NAc by adeno-associated virus increased DA release and promoted METH-CPP formation. METH reduced the SERCA ability to transport Ca2+ into the ER in SHSY5Y cells in vitro, which was reversed by CDN1163. This study revealed that METH dysregulates intracellular calcium balance by downregulating SERCA2b function, increasing DA release in NAc and inducing METH-CPP formation. Drugs that target SERCA2b may have the potential to treat METH addiction.


Subject(s)
Benzamides , Central Nervous System Stimulants , Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Methamphetamine/metabolism , Nucleus Accumbens , Calcium/metabolism , Aminoquinolines/metabolism , Aminoquinolines/pharmacology , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/metabolism
16.
Phys Chem Chem Phys ; 26(8): 6774-6781, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323593

ABSTRACT

High lattice thermal conductivity stemming from the intrinsically ordered crystal and strong interatomic bonds tends to be seen as the bottleneck for achieving excellent thermoelectric properties in full-Heusler (FH) semiconductors. In this work, we propose a novel Li-based FH compound Li2TlSb by substituting one Li atom with a Tl atom in Li3Sb. Then we systematically investigated its transport and thermoelectric properties based on self-consistent phonon (SCP) theory, electron-phonon scattering, and the Boltzmann transport equation. The theoretical calculation confirms that it exhibits outstanding mechanical properties and extreme environment adaptability. Surprisingly, the combination of an unexpectedly high spatial degeneracy and light electron dispersion at valence bands results in a high power factor in p-type systems. Additionally, the rattling behavior governed by the Tl atom and resonant bonding is responsible for ultra-low lattice thermal conductivity with 0.79 W m-1 K-1 at room temperature. Finally, a maximum p-type ZT value of 1.77 at 300 K has been achieved, which surpasses those of most of the traditional thermoelectric (TE) materials. Our results demonstrate that Li2TlSb serves as a potential candidate for room-temperature thermoelectric materials and simultaneously provides new insights for rationally designing novel FH materials in the future.

17.
Biochem Genet ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243003

ABSTRACT

Cystatin SN (CST1) appears to have pro-tumor effects in breast cancer (BC) and is involved in ferroptosis; however, there is no report on the regulation of ferroptosis by CST1 for BC development. The purpose of this study is to investigate the functions and mechanisms operated by CST1 in BC development and ferroptosis. Transcription Factor Activator Protein 2γ (TFAP2C) and CST1 levels in BC tissues and estrogen receptor (ER)+ cells were quantified by RT-qPCR and western blotting. After knocking down TFAP2C and CST1 expression in MCF7 and T47D cells, the proliferation, colony formation ability, apoptosis, and cell cycle were assessed. Ferroptosis was verified by detecting glutathione peroxidase 4 (GPX4) and 4-hydroxy-2-nonenal (4HNE) levels. The kits were used to test Fe2+, reactive oxygen species, malondialdehyde, and glutathione levels, and ultrastructure of mitochondria was observed through transmission electron microscope. Dual-luciferase reporter assay and chromatin immunoprecipitation test were carried out to investigate the interaction of TFAP2C and CST1. A transplanted tumor model was established to explore the function of TFAP2C in tumorigenesis by quantifying TFAP2C, CST1, Ki67, and GPX4 levels through western blotting and immunochemistry after silencing TFAP2C. TFAP2C and CST1 were predominantly expressed in BC cells. Silencing of TFAP2C or CST1 expression suppressed ER+ BC cell proliferation, promoted apoptosis and ferroptosis, and blocked cell cycle transition from G1 phase to S phase. TFAP2C knockdown in transplanted tumors inhibited tumor growth and GPX4 level. Upregulating CST1 nullified the anti-tumor effects of TFAP2C knockdown and TFAP2C promoted CST1 expression through transcription activation. TFAP2C activates CST1 transcription to facilitate BC development and block ferroptosis.

18.
mSystems ; 9(2): e0095323, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38193712

ABSTRACT

Transplant of donor microbiota can significantly alter the structure of the host's intestinal microbiota and alleviate early weaning stress. Screening for alternative-resistant products by transplanting fecal bacteria from healthy lambs is a current research trend in the livestock industry. In the present study, fecal microbiota transplantation was performed in lambs with diarrhea during early weaning. The transplanted fecal microbiota greatly reduced the diarrhea and serum inflammatory factor levels caused by early weaning. Transcriptome sequencing revealed that fecal microbiota transplantation alleviated colonic inflammation and increased the expression of colonic ion transport proteins. In addition, the levels of Streptococcus, Enterococcus, and Escherichia Shigella decreased in the jejunum, cecum, and colon of the lambs; meanwhile, the levels of Bifidobacterium and multiple secondary bile acids, such as ursodeoxycholic acid, increased in the colon. Furthermore, the abundance of Bifidobacterium was significantly negatively correlated with the diarrhea index. The fecal microbiota transplantation reshaped the intestinal microbiota of early-weaned lambs, protected the intestinal physiology and immune barrier, and reduced weaning stress. In addition to making available bacteriological products for controlling intestinal inflammation in young lambs, this study offers a theoretical framework and technical system for the mechanisms by which microbiota transplantation regulates intestinal health in young lambs.IMPORTANCEBefore weaning, the digestive system of lambs is not well developed; hence, its resistance to infectious diseases is weak. Under intensive feeding systems, lambs can easily be stressed and the risk of bacterial infection is high, which causes diarrhea, which in turn may cause mortality and significant economic losses to the livestock industry. With the elimination of antibiotics in animal feed, the incidence of mortality due to intestinal illnesses in lambs has gradually increased. There are several types of probiotics routinely used in young animals, but the effects and processes of their usage have only been assessed in monogastric animals. The lack of data on ruminants, particularly sheep, has severely hampered the process of efficient and healthy sheep breeding. Therefore, there is an urgent need to identify effective and safe functional supplements for lambs.


Subject(s)
Dietary Supplements , Multiomics , Animals , Sheep , Weaning , Diarrhea/therapy , Inflammation
19.
J Wildl Dis ; 60(1): 232-235, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37972637

ABSTRACT

An adult Crested Ibis (Nipponia nippon) was found moribund in the Qinling area of China. Postmortem examination and histopathological analysis revealed lung inflammation and multi-organ hemorrhage. Bacterial isolation and whole-genome sequencing confirmed Edwardsiella tarda infection.


Subject(s)
Edwardsiella tarda , Sepsis , Animals , Birds/microbiology , Sepsis/veterinary , China
20.
Water Res ; 250: 120991, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113596

ABSTRACT

Under the influence of intensive human activities and global climate change, the sources and compositions of dissolved organic matter (DOM) in the eastern plain lake (EPL) region in China have fluctuated sharply. It has been successfully proven that the humification index (HIX), which can be derived from three-dimensional excitation-emission matrix fluorescence spectroscopy, can be an effective proxy for the sources and compositions of DOM. Therefore, combined with remote sensing technology, the sources and compositions of DOM can be tracked on a large scale by associating the HIX with optically active components. Here, we proposed a novel HIX remote sensing retrieval (IRHIX) model suitable for Landsat series sensors based on the comprehensive analysis of the covariation mechanism between HIX and optically active components in different water types. The validation results showed that the model runs well on the independent validation dataset and the satellite-ground synchronous sampling dataset, with an uncertainty ranging from 30.85 % to 36.92 % (average ± standard deviation = 33.6 % ± 3.07 %). The image-derived HIX revealed substantial spatiotemporal variations in the sources and compositions of DOM in 474 lakes in the EPL during 1986-2021. Subsequently, we obtained three long-term change modes of the HIX trend, namely, significant decline, gentle change, and significant rise, accounting for 74.68 %, 17.09 %, and 8.23 % of the lake number, respectively. The driving factor analysis showed that human activities had the most extensive influence on the DOM humification level. In addition, we also found that the HIX increased slightly with increasing lake area (R2 = 0.07, P < 0.05) or significantly with decreasing trophic state (R2 = 0.83, P < 0.05). Our results provide a new exploration for the effective acquisition of long-term dynamic information about the sources and compositions of DOM in inland lakes and provide important support for lake water quality management and restoration.


Subject(s)
Dissolved Organic Matter , Water Quality , Humans , Lakes/chemistry , China , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL