Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577521

ABSTRACT

The SE(2) domain can be used to describe the position and orientation of objects in planar scenarios and is inherently nonlinear due to the periodicity of the angle. We present a novel filter that involves splitting up the joint density into a (marginalized) density for the periodic part and a conditional density for the linear part. We subdivide the state space along the periodic dimension and describe each part of the state space using the parameters of a Gaussian and a grid value, which is the function value of the marginalized density for the periodic part at the center of the respective area. By using the grid values as weighting factors for the Gaussians along the linear dimensions, we can approximate functions on the SE(2) domain with correlated position and orientation. Based on this representation, we interweave a grid filter with a Kalman filter to obtain a filter that can take different numbers of parameters and is in the same complexity class as a grid filter for circular domains. We thoroughly compared the filters with other state-of-the-art filters in a simulated tracking scenario. With only little run time, our filter outperformed an unscented Kalman filter for manifolds and a progressive filter based on dual quaternions. Our filter also yielded more accurate results than a particle filter using one million particles while being faster by over an order of magnitude.

2.
Sensors (Basel) ; 21(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923212

ABSTRACT

In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises-Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises-Fisher filters and the particle filter.

SELECTION OF CITATIONS
SEARCH DETAIL