Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 463: 114889, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38301932

ABSTRACT

Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by severe mitochondrial dysfunction, which is an intracellular process that is significantly compromised in the early stages of AD. Mitophagy, the selective removal of damaged mitochondria, is a potential therapeutic strategy for AD. Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, augmented autophagy and mitigated cognitive impairment. Our study revealed that rapamycin enhances cognitive function by activating mitophagy, alleviating neuronal loss, and improving mitochondrial dysfunction in 5 ×FAD mice. Interestingly, the neuroprotective effect of rapamycin in AD were negated by treatment with 3-MA, a mitophagy inhibitor. Overall, our findings suggest that rapamycin ameliorates cognitive impairment in 5 ×FAD mice via mitophagy activation and its downstream PINK1-Parkin pathway, which aids in the clearance of amyloid-ß (Aß) and damaged mitochondria. This study reveals a novel mechanism involving mitophagy regulation underlying the therapeutic effect of rapamycin in AD. This study provides new insights and therapeutic targets for rapamycin in the treatment of AD. However, there are still some shortcomings in this topic; if we can further knock out the PINK1/Parkin gene in animals or use siRNA technology, we can further confirm the experimental results.


Subject(s)
Alzheimer Disease , Mitochondrial Diseases , Mice , Animals , Mitophagy , Sirolimus/pharmacology , Alzheimer Disease/metabolism , Mitochondria/metabolism , Cognition , Ubiquitin-Protein Ligases/genetics , Mammals/metabolism
2.
Arch Pharm (Weinheim) ; 349(6): 428-41, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27150260

ABSTRACT

Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 µM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazoles/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Targeted Therapy/methods , Phosphorylation/drug effects , Signal Transduction/drug effects , Sirolimus/chemical synthesis , Sirolimus/chemistry , Structure-Activity Relationship , Triazoles/pharmacology
3.
Chem Pharm Bull (Tokyo) ; 64(4): 346-55, 2016.
Article in English | MEDLINE | ID: mdl-26842804

ABSTRACT

The immunosuppressant drug rapamycin, was firstly identified as a mammalian target of rapamycin (mTOR) allosteric inhibitor, and its derivatives have been successfully developed as anti-cancer drugs. Therefore, finding rapamycin derivatives with better anti-cancer activity has been proved to be an effective way to discover new targeted anti-cancer drugs. In this paper, structure modification was performed at the C-43 position of rapamycin using bioisosterism and a hybrid approach: a series of novel rapamycin-benzothiazole hybrids 4a-e, 5a-c, and 9a, b have been designed, synthesized and evaluated for their anti-cancer activity against Caski, CNE-2, SGC-7901, PC-3, SK-NEP-1 and A-375 human cancer cell lines. Some of these compounds (4a-e, 9a, b) displayed good to excellent potency against the Caski and SK-NEP-1 cell line as compared with rapamycin. Compound 9b as the most active compound showed IC50 values of 8.3 (Caski) and 9.6 µM (SK-NEP-1), respectively. In addition, research on the mechanism showed that 9b was able to cause G1 phase arrest and induce apoptosis in the Caski cell line. Most importantly, it significantly decreased the phosphorylation of S6 ribosomal protein, p70S6K1 and 4EBP1, which indicated that 9b inhibited the cancer cell growth by blocking the mTOR pathway and may have the potential to become a new mTOR inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/chemistry , Drug Design , Sirolimus/chemistry , TOR Serine-Threonine Kinases/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...