Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37760020

ABSTRACT

Liver fibrosis is a major challenge to global health because of its various complications, including cirrhosis and hepatocarcinoma, while no effective treatment is available for it. Sappanone A (SA) is a homoisoflavonoid extracted from the heartwood of Caesalpinia sappan Linn. with anti-inflammatory and antioxidant properties. However, the effects of SA on hepatic fibrosis remain unknown. This study aimed to investigate the protective effects of SA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. To establish a liver fibrosis model, mice were treated intraperitoneally (i.p.) with CCl4 for 4 weeks. SA (25, 50, and 100 mg/kg body weight) was i.p. injected every other day during the same period. Our data indicated that SA decreased liver injury, fibrotic responses, and inflammation due to CCl4 exposure. Consistently, SA reduced oxidative stress and its-mediated hepatocyte death in fibrotic livers. Of note, SA could not directly affect the activation of hepatic stellate cells. Mechanistically, SA treatment lessened oxidative stress-triggered cell death in hepatocytes after CCl4 exposure. SA down-regulated the expression of M1 macrophage polarization markers (CD86 and iNOS) and up-regulated the expression of M2 macrophage polarization markers (CD163, IL-10, and Arg1) in livers and macrophages. Meanwhile, SA induced the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, decreased inflammatory responses and the trend of M2 macrophage polarization provided by SA were substantially abolished by SR202 (a PPARγ inhibitor) treatment in macrophages. Additionally, SA treatment promoted fibrosis regression. Taken together, our findings revealed that treatment with SA alleviated CCl4-induced fibrotic liver in mice through suppression of oxidative stress-mediated hepatocyte death and promotion of M2 macrophage polarization via PPARγ. Thus, SA might pave the way for a new hepatoprotective agent to treat liver fibrosis.

2.
Int Immunopharmacol ; 123: 110752, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573690

ABSTRACT

Immune-inflammatory responses play a key role in the development of nonalcoholic steatohepatitis (NASH). Previous studies have demonstrated that CXC motif chemokine ligand 5 (CXCL5) correlates positively with obesity and type 2 diabetes. This study is to explore the functional role of CXCL5 in the pathogenesis of NASH. To establish a NASH model, mice were fed with methionine-and choline-deficient high-fat diet for 6 weeks and anti-CXCL5 mAb was injected during the same period. An in vitro NASH model was established by treating palmitic acid (PA), using a trans-well co-culture system of mouse primary hepatocytes and Kupffer cells (KCs), and recombinant mouse (rm) CXCL5 was treated after PA administration. Our data showed that hepatic CXCL5 levels were highly expressed in the NASH mouse model. CXCL5 neutralization significantly alleviated the severity of NASH livers, demonstrated by pathological analysis, decreased biochemicals, and inflammation. Besides, neutralizing CXCL5 reduced lipid accumulation, cell death, and fibrosis in injured livers. In vitro, rmCXCL5 could not affect the activation of hepatic stellate cells. Also, rmCXCL5 exacerbated PA-induced hepatotoxicity and lipid deposition in hepatocytes co-cultured with KCs rather than in single-cultured hepatocytes. Mechanistically, rmCXCL5 not only promoted NOD-like receptor pyrin domain-containing protein 3 (NLRP3) expression, Cleaved caspase-1 expression, and interleukin 1 beta (IL-1ß) secretion in single-cultured and co-cultured KCs but also increased lipid deposition in co-cultured hepatocytes. In addition, MCC950, an inhibitor of NLRP3, almost abolished the effects of rmCXCL5 on PA-treated co-culture system. Therefore, CXCL5 could exacerbate NASH by promoting lipotoxicity of hepatocytes via upregulating NLRP3/Caspase-1/IL-1ß signaling in KCs.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Mice , Caspase 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Palmitic Acid/pharmacology
3.
Toxicology ; 480: 153336, 2022 10.
Article in English | MEDLINE | ID: mdl-36126895

ABSTRACT

Sappanone A (SA), a homoisoflavonoid compound extracted from the heartwood of Caesalpinia sappan Linn., exerts anti-inflammatory and antioxidant activities. However, the effects of SA on acetaminophen (APAP) overdose-induced acute liver injury (ALI) have not been determined yet. This study aims to explore the protective effects of SA and the potential mechanisms of action. Mice were pretreated with SA (25, 50, and 100 mg/kg) by intraperitoneal (i.p.) injection for seven days prior to APAP (300 mg/kg, i.p.) administration. At 12 h after APAP injection, serum and liver samples were collected. Primary murine hepatocytes were used to investigate the underlying mechanisms. SA pretreatment dose-dependently attenuated APAP-induced ALI, as validated by reduced serum alanine/aspartate aminotransferase levels, histopathologic lesions, and oxidative stress. Consistently, pretreatment with SA reduced the formation of APAP protein adducts in damaged livers of mice. Mechanistically, SA could facilitate the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and thus promote cellular glutathione (GSH) synthesis. The hepatoprotective outcomes provided by SA were significantly abolished by treatment with ML385, a Nrf2 inhibitor. Besides, anti-inflammatory property of SA reduced inflammatory reaction in injured livers of mice. Of note, posttreatment with SA reveals significant therapeutic influences against APAP-induced ALI in mice. Collectively, our findings demonstrated that pretreated-SA ameliorated APAP-mediated ALI in mice, at least in part, by reducing the generation of APAP protein adducts via Nrf2-enhanced GSH synthesis, and by diminishing hepatic inflammation. Therefore, SA could be a potential hepatoprotective agent for treating ALI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Acetaminophen/toxicity , Alanine/metabolism , Alanine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspartate Aminotransferases , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Glutathione/metabolism , Isoflavones , Liver , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL