Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Bioenerg Biomembr ; 52(4): 257-268, 2020 08.
Article in English | MEDLINE | ID: mdl-32472432

ABSTRACT

To investigate the effect of hydrogen-rich water on myocardial tissue metabolism in a myocardial ischemia-reperfusion injury (MIRI) rat model. Twelve rats were randomly divided into a hydrogen-rich water group and a control group of size 6 each. After the heart was removed, it was fixed in the Langendorff device, and the heart was perfused with 37 °C perfusion solution pre-balanced with oxygen. The control group was perfused with Kreb's-Ringers (K-R) solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. Liquid Chromatograph Mass Spectrometer (LC-MS) analysis platform was used for metabolomics research. Principle component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), Variable importance in projection (VIP) value of OPLS-DA model (threshold value ≥1) were employed with independent sample T Test (p < 0.05) to find differentially expressed metabolites, and screen for differential metabolic pathways. VIP (OPLS-DA) analysis was performed with T test, and the metabolites of the control group and the hydrogen-rich water group were significantly different, and the glycerophospholipid metabolism was screened. Seven myocardial ischemia-reperfusion injury (MIRI)-related signaling pathways were identified, including glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI) anchored biosynthesis, and purine metabolism, as well as 10 biomarkers such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Hydrogen-rich water regulates the metabolic imbalance that could change MIRI myocardial tissue metabolism, and alleviate ischemia-reperfusion injury in isolated hearts of rats through multiple signaling pathways.


Subject(s)
Hydrogen/metabolism , Myocardial Reperfusion Injury/metabolism , Water/metabolism , Animals , Male , Metabolomics , Rats , Signal Transduction
2.
Pak J Biol Sci ; 23(2): 103-112, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31944068

ABSTRACT

Cardiovascular disease accounts for one-third of all deaths, with ischemic heart disease as the main cause of death. Under pathological conditions, ischemia-reperfusion injury (IRI) often occurs in tissues. Ischemic injury is mainly caused by anaerobic cell death and reperfusion which results in a wide range of inflammatory responses. These responses are able to increase tissue damage and even damage to the whole body. IRI can also aggravate the original cardiovascular disease during the treatment of cardiovascular disease. Therefore, it is particularly important to understand the mechanism of myocardial ischemia-reperfusion injury (MIRI) for clinical treatment and application. At the same time, it is necessary to find a safe, reliable and feasible method for treating MIRI to reduce the incidence of complications and mortality as well as improve the prognosis and quality of life of patients. As a selective antioxidant, hydrogen can neutralize excessive free radicals, has certain anti-apoptotic and anti-inflammatory effects and it has gradually become a focus and hotspot of preclinical and clinical research. Hydrogen has been shown to have a certain therapeutic effect on MIRI, which can provide a new therapeutic direction for the clinical treatment of myocardial ischemia-reperfusion injury. In this review, the protective mechanism and clinical application of hydrogen in myocardial ischemia-reperfusion injury is discussed.


Subject(s)
Hydrogen/therapeutic use , Myocardial Reperfusion Injury/therapy , Myocardium/pathology , Animals , Antioxidants/metabolism , Calcium/metabolism , Cardiovascular Diseases/metabolism , Free Radicals , Humans , Mice , Myocardial Reperfusion Injury/metabolism , Myocardium/enzymology , Myocytes, Cardiac/metabolism , Oxidative Stress , Xanthine Dehydrogenase/metabolism
3.
Curr Mol Med ; 20(5): 396-406, 2020.
Article in English | MEDLINE | ID: mdl-31702499

ABSTRACT

BACKGROUND: The effects of hydrogen-rich water on PI3K/AKT-mediated apoptosis were studied in rats subjected to myocardial ischemia-reperfusion injury (MIRI). Methdos: Sixty rats were divided randomly into a hydrogen-rich water group and a control group. The hearts were removed and fixed in a Langendorff device. Hearts from the control group were perfused with K-R solution, and hearts from the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two treatment groups were then divided randomly into pre-ischemic period, ischemic period and reperfusion period groups(10 rats per group), which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC) and Western blotting. Caspase-3 activity was detected by spectrophotometry. RESULTS: Among the hydrogen-rich water group, the PI3K/AKT signaling pathway was significantly activated, and FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in ischemia-reperfusion subgroup compared with the preischemic and ischemic subgroups. In the ischemia-reperfusion hydrogen-rich water group, PI3K, AKT and p-AKT mRNA and protein expression levels were increased while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased compared with those in the corresponding control group (P<0.05). CONCLUSION: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.


Subject(s)
Hydrogen/pharmacology , Myocardial Reperfusion Injury/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Water/administration & dosage , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Heart/drug effects , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar
4.
J Bioenerg Biomembr ; 51(6): 393-402, 2019 12.
Article in English | MEDLINE | ID: mdl-31768722

ABSTRACT

The effects of hydrogen-rich water on oxidative stress via the Nrf2/ARE signaling pathway were studied in rats with myocardial ischemia-reperfusion injury (MIRI). Sixty rats were randomly divided into a hydrogen-rich water group and a control group, with 30 rats in each group. The two groups were randomly divided into three groups: pre-ischemic period, ischemic period and reperfusion period. After the heart was removed, it was fixed in a Langendorff device and perfused with an oxygen-balanced 37 °C perfusate. The control group was perfused with Kreb's-Ringers (K-R) solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The levels of mRNA and protein of Nrf2, NQO1, HO-1 and SOD-1 in cardiomyocytes were detected by RT-qPCR, immunohistochemistry (IHC) and Western blot analysis. SOD activity and MDA content were determined. Hydrogen-rich water increased the activation of the Nrf2/ARE signaling pathway, and the levels of mRNA and protein Nrf2, NQO1, HO-1 and SOD-1 were significantly increased (P < 0.05) in the ischemia-reperfusion period compared with the ischemic period. In the control group, the levels of mRNA and protein of Nrf2, NQO1, HO-1 and SOD-1 were significantly decreased (P < 0.05) in the ischemia-reperfusion period compared with the ischemic period. Compared with the ischemic period, the ischemia-reperfusion phase showed significantly increased SOD activity and significantly decreased MDA content in the hydrogen-rich water group, while SOD activity was significantly decreased, and MDA content was significantly increased in the control group (P < 0.05). Hydrogen-rich water can activate the Nrf2/ARE signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts and reduce the oxidative stress level of myocardial tissue.


Subject(s)
Hydrogen/metabolism , Myocardial Reperfusion Injury/genetics , NF-E2-Related Factor 2/metabolism , Water/chemistry , Animals , Disease Models, Animal , Humans , Male , Rats , Rats, Wistar , Signal Transduction
5.
Int J Med Sci ; 16(9): 1254-1259, 2019.
Article in English | MEDLINE | ID: mdl-31588191

ABSTRACT

Background: The differentially expressed proteins (DEPs) involved in the effect of hydrogen-rich water on myocardial ischemia reperfusion injury (MIRI) and their biological processes and signaling pathway were analyzed. Methods: 20 Wistar rats were randomly and equally divided into a control and a hydrogen-rich group. Hearts were removed and fixed in a Langendorff device. The control group was perfused with K-R solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. Protein was extracted from the ventricular tissues, and GSR-CAA-67 was used to identify the DEPs between two groups. DEPs were analyzed through bioinformatic methods. Results: Compared with the control group, in the treatment group, the expression of 25 proteins was obviously decreased (P<0.05). For the DEPs, 359 biological processes, including the regulation of signaling pathways, immune reaction and formation of cardiovascular endothelial cells, were selected by GO enrichment analysis. Five signaling pathways were selected by KEGG pathway enrichment analysis. Conclusions: 25 proteins that are involved in hydrogen-water reducing MIRI were selected by high-throughput GSR-CAA-67. The biological processes and metabolic pathways involved in the DEPs were summarized, providing theoretical evidence for the clinical application of hydrogen-rich water.


Subject(s)
Hydrogen/pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Proteins/metabolism , Animals , Cluster Analysis , Computational Biology , Gene Ontology , Male , Protein Array Analysis/statistics & numerical data , Proteins/analysis , Rats, Wistar , Water/chemistry
6.
Curr Mol Med ; 19(4): 294-302, 2019.
Article in English | MEDLINE | ID: mdl-30907314

ABSTRACT

BACKGROUND: Hydrogen has been shown to exert a bioactive effect on the myocardium. This study examined the signalling pathways for hydrogen attenuating ischaemia-reperfusion injury. METHODS: In total, 20 male Wistar rats were evaluated for the effects of hydrogen-rich water on ischaemia-reperfusion in hearts. Left ventricular tissue was taken for screening and analysis of active protein factors by protein chip technology. The enrichment of the KEGG pathway was obtained by using the Gene Ontology (GO) enrichment principle. The expression of JAK2, STAT1, STAT3, p-STAT1, p-JAK2, p-STAT3 in rat myocardium was detected by Western blot analysis and immunohistochemistry. The apoptosis rates of the control and hydrogen-rich water groups were detected by TUNEL staining. RESULTS: The expression levels of 25 proteins, including five transduction pathways, were downregulated in the hydrogen-rich water group. The expression levels of p- JAK2/JAK2, p-STAT3/STAT3 were upregulated in the hydrogen-rich water group compared with the control group, and p-STAT1/STAT1 was downregulated in the hydrogen-rich water group compared with the control group. Furthermore, the apoptosis rate was significantly decreased in the hydrogen-rich water group, as well. CONCLUSION: Hydrogen-rich water may inhibit the apoptosis of cardiomyocytes after ischaemia-reperfusion by upregulating the expression of the JAK2-STAT3 signalling pathway, which reduces ischaemia-reperfusion injury.


Subject(s)
Hydrogen/pharmacology , Myocardial Reperfusion Injury/metabolism , Animals , Apoptosis/drug effects , Biomarkers , Cell Membrane , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Hydrogen/chemistry , Immunohistochemistry , Janus Kinases/metabolism , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/etiology , Protein Array Analysis , Rats , STAT Transcription Factors/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL