Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Curr Pharm Des ; 2024 06 25.
Article in English | MEDLINE | ID: mdl-38919077

ABSTRACT

BACKGROUND & PURPOSE: Hepatocellular Carcinoma (HCC) is a type of liver cancer known for its poor prognosis and high mortality. Teoptinib is a highly selective MET inhibitor that has been used in the treatment of liver cancer. Although good progress has been made in clinical treatment, further improvement is still needed. In this study, a series of novel Teoptinib derivatives were synthesized and evaluated as anti-cancer agents for the treatment of liver cancer, and an oral nanodrug delivery system was also explored. METHODS: A series of novel Teoptinib derivatives were synthesized, and an oral nanodrug delivery system was also explored. HPLC, high-resolution mass spectrometer and NMR were used to determine the structure and molecular formula of the synthesized compounds. Zeta potential assay was used to access the particle size distribution and zeta potential of the nanoparticles. MTT assay, cell colony formation assay, cell apoptosis inhibition assay, cell scratch assay, and the MHCC-97H xenograft model of nude mice assay were used to evaluate the in vitro and in vivo anti-tumor activity of the synthesized compounds. RESULTS: Compound (R)-10 showed the best antitumor activity with 0.010 µM of the IC50 value against MHCC-97H, a human liver cancer cell line with high c-Met expression. The MHCC-97H xenograft model of nude mice assay showed that nano-prodrug of compound (R)-10 exhibited good in vivo activity with 87.67% of the TGI at the dosage of 8 mg/kg. CONCLUSION: We designed and synthesized a series of c-Met inhibitors containing different side chains and chiral centers as anti-liver cancer agents. Among them, compound (R)-10 shows a promising effect as a lead molecule for further study in the treatment of liver cancer. The successful incorporation of (R)-10 into a novel oral nanodrug delivery system highlights the importance of effective drug delivery systems for enhanced therapeutic efficacy.

.

2.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829910

ABSTRACT

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Subject(s)
Herpesvirus 1, Human , Immunity, Innate , Humans , Animals , Herpesvirus 1, Human/immunology , Mice , Virus Replication , Herpes Simplex/immunology , Herpes Simplex/virology , Herpes Simplex/metabolism , Signal Transduction , HEK293 Cells , Repressor Proteins
3.
Genome Biol ; 24(1): 268, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012744

ABSTRACT

BACKGROUND: Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS: Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS: Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.


Subject(s)
Colorectal Neoplasms , Histones , Myeloid-Lymphoid Leukemia Protein , Proto-Oncogene Proteins c-jun , Animals , Colorectal Neoplasms/genetics , Enhancer Elements, Genetic , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Transcription Factor AP-1/metabolism , Humans , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism
4.
J Gastroenterol Hepatol ; 38(8): 1426-1437, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37332142

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The detailed epigenomic changes during fat accumulation in liver are not clear yet. Here, we performed ChIP-Seq analysis in the liver tissues of high-fat diet and regular chow diet mice and investigated the dynamic landscapes of H3K27ac and H3K9me3 marks on chromatin. We find that the activated typical enhancers marked with H3K27ac are enriched on lipid metabolic pathways in fat liver; however, super enhancers do not change much. The regions covered with H3K9me3 repressive mark seem to undergo great changes, and its peak number and intensity both decrease in fat liver. The enhancers located in lost H3K9me3 regions are enriched in lipid metabolism and inflammatory pathways; and motif analysis shows that they are potential targets for transcription factors involved in metabolic and inflammatory processes. Our study has revealed that H3K9me3 may play an important role during the pathogenesis of NAFLD through regulating the accessibility of enhancers.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Lipid Metabolism/genetics , Epigenesis, Genetic
5.
Cell Death Dis ; 13(10): 843, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192394

ABSTRACT

Abnormality of enhancer regulation has emerged as one of the critical features for cancer cells. KDM5C is a histone H3K4 demethylase and frequently mutated in several types of cancer. It is critical for H3K4me3 and activity of enhancers, but its regulatory mechanisms remain elusive. Here, we identify TRIM11 as one ubiquitin E3 ligase for KDM5C. TRIM11 interacts with KDM5C, catalyzes K48-linked ubiquitin chain on KDM5C, and promotes KDM5C degradation through proteasome. TRIM11 deficiency in an animal model represses the growth of breast tumor and stabilizes KDM5C. In breast cancer patient tissues, TRIM11 is highly expressed and KDM5C is lower expressed, and their expression is negatively correlated. Mechanistically, TRIM11 regulates the enhancer activity of genes involved in cell migration and immune response by targeting KDM5C. TRIM11 and KDM5C regulate MCAM expression and cell migration through targeting H3K4me3 on MCAM enhancer. Taken together, our study reveals novel mechanisms for enhancer regulation during breast cancer tumorigenesis and development.


Subject(s)
Histones , Neoplasms , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
6.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194839, 2022 08.
Article in English | MEDLINE | ID: mdl-35750313

ABSTRACT

Enhancer is one kind of cis-elements regulating gene transcription, whose activity is tightly controlled by epigenetic enzymes and histone modifications. Active enhancers are classified into typical enhancers, super-enhancers and over-active enhancers, according to the enrichment and location of histone modifications. Epigenetic factors control the level of histone modifications on enhancers to determine their activity, such as histone methyltransferases and acetylases. Transcription factors, cofactors and mediators co-operate together and are required for enhancer functions. In turn, abnormalities in these trans-acting factors affect enhancer activity. Recent studies have revealed enhancer dysregulation as one of the important features for cancer. Variations in enhancer regions and mutations of enhancer regulatory genes are frequently observed in cancer cells, and altering the activity of onco-enhancers is able to repress oncogene expression, and suppress tumorigenesis and metastasis. Here we summarize the recent discoveries about enhancer regulation in cancer and discuss their potential application in diagnosis and treatment.


Subject(s)
Enhancer Elements, Genetic , Neoplasms , Epigenomics , Histone Code , Humans , Neoplasms/genetics , Transcription Factors/genetics
7.
Adv Sci (Weinh) ; 9(23): e2200536, 2022 08.
Article in English | MEDLINE | ID: mdl-35712778

ABSTRACT

Inflammation is one of the critical risk factors for colorectal cancer (CRC). However, the mechanisms for transition from colitis to CRC remain elusive. Recently, epigenetic changes have emerged as important regulatory factors for colitis-associated cancer. Here, a systematic epigenomic study of histone modifications is performed, including H3K4me1, H3K4me3, H3K27ac, H3K27me3 and H3K9me3, in an AOM-DSS-induced CRC mouse model. In combination with transcriptomic data, the authors generate a dataset of 105 deep sequencing files and illustrate the dynamic landscape of chromatin states at five time points during inflammation-cancer transition. Functional gene clusters are identified based on dynamic transcriptomic and epigenomic information, and key signaling pathways in the process are illustrated. This study's results reveal that enhancer state regions play important roles during inflammation-cancer transition. It predicts novel transcription factors based on enhancer information, and experimentally proves OTX2 as a critical tumor suppressive transcription factor. Taken together, this study provides comprehensive epigenomic data and reveals novel molecular mechanisms for colitis-associated cancer.


Subject(s)
Chromatin , Colitis-Associated Neoplasms , Animals , Histone Code , Inflammation , Mice , Transcription Factors/genetics
8.
Cell Insight ; 1(3): 100033, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37193046

ABSTRACT

Multiple diseases, such as cancer and neural degeneration diseases, are related with the latent infection of DNA viruses. However, it is still difficult to clean up the latent DNA viruses and new anti-viral strategies are critical for disease treatment. Here, we screen a pool of small chemical molecules and identify UNC0379, an inhibitor for histone H4K20 methyltransferase SETD8, as an effective inhibitor for multiple DNA viruses. UNC0379 not only enhances the expression of anti-viral genes in THP-1 cells, but also repress DNA virus replication in multiple cell lines with defects in cGAS pathway. We prove that SETD8 promotes DNA virus replication in a manner dependent on its enzyme activity. Our results further indicated that SETD8 is required for PCNA stability, one factor critical for viral DNA replication. Viral infection stimulates the interaction between SETD8 and PCNA and thus enhances PCNA stability and viral DNA replication. Taken together, our study reveals a new mechanism for regulating viral DNA replication and provides a potential strategy for treatment of diseases related with DNA viruses.

9.
Nat Commun ; 12(1): 6407, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737287

ABSTRACT

Colorectal cancer is one of the most common cancers in the world. Although genomic mutations and single nucleotide polymorphisms have been extensively studied, the epigenomic status in colorectal cancer patient tissues remains elusive. Here, together with genomic and transcriptomic analysis, we use ChIP-Seq to profile active enhancers at the genome wide level in colorectal cancer paired patient tissues (tumor and adjacent tissues from the same patients). In total, we sequence 73 pairs of colorectal cancer tissues and generate 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq samples. Our analysis identifies 5590 gain and 1100 lost variant enhancer loci in colorectal cancer, and 334 gain and 121 lost variant super enhancer loci. Multiple key transcription factors in colorectal cancer are predicted with motif analysis and core regulatory circuitry analysis. Further experiments verify the function of the super enhancers governing PHF19 and TBC1D16 in regulating colorectal cancer tumorigenesis, and KLF3 is identified as an oncogenic transcription factor in colorectal cancer. Taken together, our work provides an important epigenomic resource and functional factors for epigenetic studies in colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , Animals , Cell Line , Chromatin Immunoprecipitation Sequencing , Epigenomics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Sequence Analysis, RNA
10.
PLoS Pathog ; 17(9): e1009918, 2021 09.
Article in English | MEDLINE | ID: mdl-34529741

ABSTRACT

Under RNA virus infection, retinoic acid-inducible gene I (RIG-I) in host cells recognizes viral RNA and activates the expression of type I IFN. To investigate the roles of protein methyltransferases and demethylases in RIG-I antiviral signaling pathway, we screened all the known related enzymes with a siRNA library and identified LSD1 as a positive regulator for RIG-I signaling. Exogenous expression of LSD1 enhances RIG-I signaling activated by virus stimulation, whereas its deficiency restricts it. LSD1 interacts with RIG-I, promotes its K63-linked polyubiquitination and interaction with VISA/MAVS. Interestingly, LSD1 exerts its function in antiviral response not dependent on its demethylase activity but through enhancing the interaction between RIG-I with E3 ligases, especially TRIM25. Furthermore, we provide in vivo evidence that LSD1 increases antiviral gene expression and inhibits viral replication. Taken together, our findings demonstrate that LSD1 is a positive regulator of signaling pathway triggered by RNA-virus through mediating RIG-I polyubiquitination.


Subject(s)
Gene Expression Regulation/physiology , Histone Demethylases/metabolism , RNA Virus Infections/metabolism , Receptors, Cell Surface/metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Ubiquitination , Vero Cells
11.
Front Mol Biosci ; 8: 701531, 2021.
Article in English | MEDLINE | ID: mdl-34409068

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, but its epigenomic features have not been determined. Here, we studied the chromatin landscape of active enhancers of HNSCC head tumor tissues by performing H3K27ac and H3K4me1 ChIP-Seq with a Tgfbr1/Pten double conditional knockout HNSCC mouse model. We identified 1,248 gain variant enhancer loci (VELs) and 2,188 lost VELs, as well as 153 gain variant super enhancer loci (VSELs) and 234 lost VSELs. Potentially involved transcription factors were predicted with motif analysis, and we identified AP-1 as one of the critical oncogenic transcription factors in HNSCC and many other types of cancer. Combining transcriptomic and epigenomic data, our analysis also showed that AP-1 and histone modifications coordinately regulate target gene expression in HNSCC. In conclusion, our study provides important epigenomic information for enhancer studies in HNSCC and reveals new mechanism for AP-1 regulating HNSCC.

12.
Adv Sci (Weinh) ; 8(19): e2100779, 2021 10.
Article in English | MEDLINE | ID: mdl-34363353

ABSTRACT

In eukaryote cells, core components of chromatin, such as histones and DNA, are packaged in nucleus. Leakage of nuclear materials into cytosol will induce pathological effects. However, the underlying mechanisms remain elusive. Here, cytoplasmic localization of nuclear materials induced by chromatin dysregulation (CLIC) in mammalian cells is reported. H3K9me3 inhibition by small chemicals, HP1α knockdown, or knockout of H3K9 methylase SETDB1, induces formation of cytoplasmic puncta containing histones H3.1, H4 and cytosolic DNA, which in turn activates inflammatory genes and autophagic degradation. Autophagy deficiency rescues H3 degradation, and enhances the activation of inflammatory genes. MRE11, a subunit of MRN complex, enters cytoplasm after heterochromatin dysregulation. Deficiency of MRE11 or NBS1, but not RAD50, inhibits CLIC puncta in cytosol. MRE11 depletion represses tumor growth enhanced by HP1α deficiency, suggesting a connection between CLIC and tumorigenesis. This study reveals a novel pathway that heterochromatin dysregulation induces translocation of nuclear materials into cytoplasm, which is important for inflammatory diseases and cancer.


Subject(s)
Cytoplasm/genetics , Cytoplasm/metabolism , Epigenesis, Genetic/genetics , Histones/genetics , Histones/metabolism , Animals , Male , Mice , Mice, Inbred BALB C , Models, Animal , Transcription Factors/genetics
13.
Clin Epigenetics ; 13(1): 127, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112215

ABSTRACT

BACKGROUND: The aetiology of inflammatory bowel disease (IBD) is related to genetics and epigenetics. Epigenetic regulation of the pathogenesis of IBD has not been well defined. Here, we investigated the role of H3K27ac events in the pathogenesis of IBD. Based on previous ChIP-seq and RNA-seq assays, we studied signal transducer and activator of transcription 1 (STAT1) as a transcription factor (TF) and investigated whether the STAT1-EP300-H3K27ac axis contributes to the development of IBD. We performed ChIP-PCR to investigate the interaction between STAT1 and H3K27ac, and co-IP assays were performed to investigate the crosstalk between STAT1 and EP300. RESULTS: Lymphocyte cytosolic protein 2 (LCP2) and TNF-α-inducible protein 2 (TNFAIP2) are target genes of STAT1. p-STAT1 binds to the enhancer loci of the two genes where H3K27ac is enriched, and EP300 subsequently binds to regulate their expression. In mice with dextran sulfate sodium (DSS)-induced acute colitis, an EP300 inhibitor significantly inhibited colitis. CONCLUSIONS: p-STAT1 and EP300 promote TNFAIP2 and LCP2 expression through an increase in H3K27ac enrichment on their enhancers and contribute to the pathogenesis of chronic inflammation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytokines/genetics , DNA Methylation/genetics , E1A-Associated p300 Protein/genetics , Epigenesis, Genetic/genetics , Inflammatory Bowel Diseases/genetics , Phosphoproteins/genetics , STAT1 Transcription Factor/genetics , Animals , China , Disease Models, Animal , Humans , Mice
14.
J Gastroenterol Hepatol ; 36(10): 2850-2863, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33991018

ABSTRACT

BACKGROUND AND AIM: Epigenetic modification is an important part of the pathogenesis of inflammatory bowel disease (IBD). Some studies proved that p62 was involved in inflammatory response and upregulated in IBD patients, and histone modification plays an important role in regulating p62 expression. SETD8, a histone H4K20 methyltransferase, has been reported downregulated in some inflammatory diseases. Here, we investigated the role of SETD8 in the development of IBD and its underlying mechanisms. METHODS: An inflammatory cell model was established to elucidate whether SETD8 involved in inflammatory response in macrophages. Three percent dextran sodium sulfate-induced colitis murine model injection with SETD8 inhibitor was used in our study to investigate whether SETD8 inhibition can affect the progress of IBD. The expression of SETD8 and p62 was measured by qRT-PCR and western blot. The mRNA level of inflammatory cytokines was analyzed by qRT-PCR. In addition, chromatin immunoprecipitation-PCR was performed to identify the mechanism by which SETD8 regulates p62. RESULTS: SETD8 expression obviously decreased in vitro, in vivo models and in IBD patients. In lipopolysaccharide-activated RAW264.7 cells, knockdown of SETD8 significantly increased the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α, IL-6, IL-1ß, and MCP-1. Based on the dataset, we verified that p62 was a target gene of SETD8 and chromatin immunoprecipitation-PCR assay identified that silence of SETD8 distinctly decreases the H4K20me1 enrichment in the promoter of p62. Moreover, silencing of p62 partly reverses the SETD8 inhibition-mediated pro-inflammatory effect in vitro. Finally, SETD8 pharmacological inhibitor (UNC0379) aggravated the disease progression in dextran sodium sulfate-induced murine colitis. CONCLUSION: Our findings elucidate an epigenetic mechanism by which SETD8 regulates the p62 expression and restrains the inflammatory response in colitis. Our result suggests that targeting SETD8 may be a promising therapy for IBD.


Subject(s)
Colitis , Histone-Lysine N-Methyltransferase/metabolism , Inflammatory Bowel Diseases , Animals , Colitis/chemically induced , Colitis/genetics , Cytokines , Dextran Sulfate , Histone-Lysine N-Methyltransferase/genetics , Humans , Inflammatory Bowel Diseases/genetics , Lipopolysaccharides , Mice , RNA, Messenger
15.
Cell Death Dis ; 12(4): 364, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824309

ABSTRACT

MLL3 is a histone H3K4 methyltransferase that is frequently mutated in cancer, but the underlying molecular mechanisms remain elusive. Here, we found that MLL3 depletion by CRISPR/sgRNA significantly enhanced cell migration, but did not elevate the proliferation rate of cancer cells. Through RNA-Seq and ChIP-Seq approaches, we identified TNS3 as the potential target gene for MLL3. MLL3 depletion caused downregulation of H3K4me1 and H3K27ac on an enhancer ~ 7 kb ahead of TNS3. 3C assay indicated the identified enhancer interacts with TNS3 promoter and repression of enhancer activity by dCas9-KRAB system impaired TNS3 expression. Exogenous expression of TNS3 in MLL3 deficient cells completely blocked the enhanced cell migration phenotype. Taken together, our study revealed a novel mechanism for MLL3 in suppressing cancer, which may provide novel targets for diagnosis or drug development.


Subject(s)
Carcinogenesis/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Tensins/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Enhancer Elements, Genetic/genetics , Histones/metabolism , Humans , Promoter Regions, Genetic/genetics , Tensins/genetics
16.
Hepatology ; 73(5): 1797-1815, 2021 05.
Article in English | MEDLINE | ID: mdl-33058300

ABSTRACT

BACKGROUND AND AIMS: Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS: Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS: We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.


Subject(s)
Carcinoma, Hepatocellular/etiology , Histone-Lysine N-Methyltransferase/deficiency , Lipid Metabolism , Liver Neoplasms/etiology , Liver/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cholesterol/blood , Chromatin Immunoprecipitation , Gene Editing , Gene Expression Regulation, Neoplastic , HEK293 Cells , Hep G2 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Triglycerides/blood
17.
Curr Med Sci ; 40(5): 900-909, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33123904

ABSTRACT

Although the exact etiology of inflammatory bowel disease (IBD) remains unclear, exaggerated immune response in genetically predisposed individuals has been reported. Th1 and Th17 cells mediate IBD development. Macrophages produce IL-12 and IL-23 that share p40 subunit encoded by IL12B gene as heteromer partner to drive Th1 and Th17 differentiation. The available animal and human data strongly support the pathogenic role of IL-12/IL-23 in IBD development and suggest that blocking p40 might be the potential strategy for IBD treatment. Furthermore, aberrant alteration of some cytokines expression via epigenetic mechanisms is involved in pathogenesis of IBD. In this study, we analyzed core promoter region of IL12B gene and investigated whether IL12B expression could be regulated through targeted epigenetic modification with gene editing technology. Transcription activator-like effectors (TALEs) are widely used in the field of genome editing and can specifically target DNA sequence in the host genome. We synthesized the TALE DNA-binding domains that target the promoter of human IL12B gene and fused it with the functional catalytic domains of epigenetic enzymes. Transient expression of these engineered enzymes demonstrated that the TALE-DNMT3A targeted the selected IL12B promoter region, induced loci-specific DNA methylation, and down-regulated IL-12B expression in various human cell lines. Collectively, our data suggested that epigenetic editing of IL12B through methylating DNA on its promoter might be developed as a potential therapeutic strategy for IBD treatment.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Genetic Predisposition to Disease , Interleukin-12 Subunit p40/genetics , DNA Methyltransferase 3A , DNA-Binding Proteins/genetics , Epigenome/genetics , Gene Editing , Gene Expression Regulation/genetics , Humans , Interleukin-12/genetics , Interleukin-23/genetics , Macrophages/metabolism , Macrophages/pathology , Promoter Regions, Genetic/genetics , Transcription Activator-Like Effector Nucleases/genetics
18.
Oncogenesis ; 9(5): 57, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32483180

ABSTRACT

Gene transcription is coordinately regulated by multiple transcription factors. However, a systematic approach is still lacking to identify co-regulators for transcription factors. Here, we performed ChIP-Seq analysis and predicted the regulators for p53-mediated transcription process, from which we confirmed the roles of GLIS2, MAZ and MEF2A in regulating p53 target genes. We revealed that GLIS2 selectively regulates the transcription of PUMA but not p21. GLIS2 deficiency caused the elevation of H3K27ac and p53 binding on the PUMA enhancer, and promoted PUMA expression. It increased the rate of apoptosis, but not cell cycle. Moreover, GLIS2 represses H3K27ac level on enhancers, regulates the gene expression related with focal adhesion and promotes cell migration, through inhibiting p300. Big data analysis supports GLIS2 as an oncogene in colon cancer, and perhaps other cancers. Taken together, we have predicted candidates for p53 transcriptional regulators, and provided evidence for GLIS2 as an oncogene through repressing enhancer activation.

19.
Cell Death Dis ; 11(5): 351, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32393761

ABSTRACT

SETDB1, a histone H3K9 methyltransferase, has been reported to be upregulated in a variety of tumors and promotes cancer development. However, the exact pathogenesis of SETDB1 in human colorectal cancer (CRC) is hitherto unknown. Here, we showed that SETDB1 expression was highly amplified in CRC. Functionally, SETDB1 downregulation in SW480 and HCT116 cells reduced cell proliferation, migration, invasion, and increased CRC cells apoptosis. In contrast, SETDB1 overexpression promoted CRC cells proliferation, migration, and invasion. High expression of SETDB1 was associated with a more aggressive phenotype in vitro. Flow cytometry showed that cell cycle was arrested in G1 phase after SETDB1 silencing. Furthermore, depletion of SETDB1 in vivo suppressed CRC cells proliferation. Mechanistically, p21 was identified as the target of SETDB1. After transfected with siSETDB1, expression of p21 was distinctly increased. In contrast, expression of p21 was significantly decreased after overexpression SETDB1. We also showed that SETDB1 could be involved in the regulation of epithelial-mesenchymal transition (EMT) in HCT116 cells. Moreover, we confirmed that SETDB1 could regulate the activity of p21 promoter by dual-luciferase repoter assay, and proved that SETDB1 could bind to the promoter of p21 and regulate its H3K9me3 enrichment level by ChIP-PCR experiment. Finally, we verified that silencing of SETDB1 inhibited CRC tumorigenesis in vivo. In conclusion, our results indicate that SETDB1 is a major driver of CRC development and might provide a new therapeutic target for the clinical treatment of CRC.


Subject(s)
Colorectal Neoplasms/enzymology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Silencing , Histone-Lysine N-Methyltransferase/metabolism , Aged , Animals , Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Methylation , Disease Progression , Epithelial-Mesenchymal Transition , Female , G1 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , HCT116 Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Signal Transduction
20.
Antiviral Res ; 176: 104730, 2020 04.
Article in English | MEDLINE | ID: mdl-32014498

ABSTRACT

Histone positioning and modifications on viral genomes are important factors regulating virus replication. To investigate the dynamics of modified histones on the viral genome and their potential roles in antiviral response, we studied the dynamic changes of histone modifications across the HSV-1 genome in THP-1 cells. Histone modifications were detected on the HSV-1 genome soon after infection, including H3K9me3, H3K27me3, H3K4me3 and H3K27ac. These modifications emerged on the viral genome soon after infection and changed rapidly along with virus life cycle progression. The transcription repression marks, H3K9me3 and H3K27me3, decreased on the viral genome during the infection process; the transcription activation mark H3K27ac increased. Treatment with C646, an inhibitor of H3K27ac transferase p300, significantly repressed virus replication and viral gene expression. Our study reveals the relationship between histone modifications and viral gene expression and provides potential novel strategies for antiviral treatment.


Subject(s)
Epigenesis, Genetic , Genome, Viral , Herpesvirus 1, Human/genetics , Histone Code , Histones/genetics , Herpesvirus 1, Human/physiology , Humans , Protein Processing, Post-Translational , THP-1 Cells , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL