Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(25): e2300731, 2023 10.
Article in English | MEDLINE | ID: mdl-37341969

ABSTRACT

Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti3 C2 Tx MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction. Ti3 C2 Tx MXene treatment provides a superior conductivity substrate with a surface rich in functional groups, hydrophilicity, and roughness, which can provide biochemical and physical cues to support NSC adhesion and proliferation. Moreover, Ti3 C2 Tx MXene coating significantly promotes NSC differentiation into both neurons and astrocytes. Interestingly, Ti3 C2 Tx MXene acts synergistically with the alignment of nanofibers to promote the growth of neurites, indicating enhanced maturation of these neurons. RNA sequencing analysis further reveals the molecular mechanism by which Ti3 C2 Tx MXene modulates the fate of NSCs. Notably, surface modification by Ti3 C2 Tx MXene mitigates the in vivo foreign body response to implanted PLLA nanofibers. This study confirms that Ti3 C2 Tx MXene provides multiple advantages for decorating the aligned PLLA nanofibers to cooperatively improve neural regeneration.


Subject(s)
Nanofibers , Neural Stem Cells , Titanium/pharmacology , Neurons
2.
Virulence ; 9(1): 555-562, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28795862

ABSTRACT

In vitro interaction of osthol (Ost) and fluconazole (FLC) was investigated against 11 fluconazole-resistant clinical isolates of Candida albicans. Synergistic activities were determined using the checkerboard microdilution assay. The results of agar diffusion test confirmed the synergistic interaction. We used an enteric material Eudragit S100 for preparation of Ost nanoparticle (Ost-NP) to improve the oral bioavailability, biological activity of Ost. The physicochemical characteristics of Ost-S100-NP revealed Ost-S100-NP with mean particle size of 55.4±0.4 nm, encapsulation efficiency of 98.95±0.06%, drug loading efficiency of 23.89±0.25%, yield of 98.5±0.1% and a polydispersity index (PDI) of 0.165. As the Ost concentration-time curve showed, Ost-S100-NP can increase the plasma concentration and relative bioavailability of Ost compared with Ost-suspension by oral administration. In vivo, Ost-S100-NP enhanced the therapeutic efficacy of Ost against FLC-resistant C. albicans in immunosuppressed candidiasis mice model. The available information strongly suggests that Ost-S100-NP may be used as a promising compound against drug-resistant fungi.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Coumarins/pharmacology , Drug Carriers/metabolism , Drug Synergism , Polymethacrylic Acids/metabolism , Administration, Oral , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Candidiasis/drug therapy , Candidiasis/microbiology , Disease Models, Animal , Drug Carriers/administration & dosage , Drug Carriers/pharmacokinetics , Fluconazole/pharmacology , Mice , Plasma/chemistry , Polymethacrylic Acids/administration & dosage , Polymethacrylic Acids/pharmacokinetics , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...