Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Diabetes ; 73(1): 93-107, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37862465

ABSTRACT

In this study, we identified new lipid species associated with the loss of pancreatic ß-cells triggering diabetes. We performed lipidomics measurements on serum from prediabetic mice lacking ß-cell prohibitin-2 (a model of monogenic diabetes) patients without previous history of diabetes but scheduled for pancreaticoduodenectomy resulting in the acute reduction of their ß-cell mass (∼50%), and patients with type 2 diabetes (T2D). We found lysophosphatidylinositols (lysoPIs) were the main circulating lipid species altered in prediabetic mice. The changes were confirmed in the patients with acute reduction of their ß-cell mass and in those with T2D. Increased lysoPIs significantly correlated with HbA1c (reflecting glycemic control), fasting glycemia, and disposition index, and did not correlate with insulin resistance or obesity in human patients with T2D. INS-1E ß-cells as well as pancreatic islets isolated from nondiabetic mice and human donors exposed to exogenous lysoPIs showed potentiated glucose-stimulated and basal insulin secretion. Finally, addition of exogenous lysoPIs partially rescued impaired glucose-stimulated insulin secretion in islets from mice and humans in the diabetic state. Overall, lysoPIs appear to be lipid species upregulated in the prediabetic stage associated with the loss of ß-cells and that support the secretory function of the remaining ß-cells. ARTICLE HIGHLIGHTS: Circulating lysophosphatidylinositols (lysoPIs) are increased in situations associated with ß-cell loss in mice and humans such as (pre-)diabetes, and hemipancreatectomy. Pancreatic islets isolated from nondiabetic mice and human donors, as well as INS-1E ß-cells, exposed to exogenous lysoPIs exhibited potentiated glucose-stimulated and basal insulin secretion. Addition of exogenous lysoPIs partially rescued impaired glucose-stimulated insulin secretion in islets from mice and humans in the diabetic state. LysoPIs appear as lipid species being upregulated already in the prediabetic stage associated with the loss of ß-cells and supporting the function of the remaining ß-cells.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Prediabetic State , Humans , Mice , Animals , Insulin , Lysophospholipids , Glucose/pharmacology , Insulin, Regular, Human
2.
Biochim Biophys Acta Gen Subj ; 1867(12): 130492, 2023 12.
Article in English | MEDLINE | ID: mdl-37871770

ABSTRACT

BACKGROUND: The mitochondrial pyruvate carrier (MPC) is a protein complex composed of two subunits, MPC1 and MPC2. This carrier is at the interface between glycolysis and mitochondrial metabolism and plays an essential role in hepatic glucose production. METHODS: Here we describe an in vitro screen for small molecule inhibitors of the MPC using a strain of Lactococcus lactis that has been engineered to co-express the two subunits of the human MPC and is able to import exogenous 14C-pyruvate. We then tested the top candidates for potential antidiabetic effects through the repression of gluconeogenesis. RESULTS: By screening the Prestwick compound library of 1'200 drugs approved by the Food and Drug Administration for inhibitors of pyruvate uptake, twelve hit molecules were identified. In a secondary screen, the most potent inhibitors were found to inhibit pyruvate-driven oxygen consumption in mouse C2C12 muscle cells. Assessment of gluconeogenesis showed that Zaprinast, as well as the established MPC inhibitor UK5099, inhibited in vitro and in vivo hepatic glucose production. However, when tested acutely in mice without the administration of gluconeogenic substrates, MPC inhibitors raised blood glucose levels, pointing to liver-independent effects. Furthermore, chronic treatment with Zaprinast failed to correct hyperglycemia in both lean and obese diabetic mouse models. CONCLUSIONS: New MPC inhibitors have been identified, showing inhibitory effects on hepatic glucose production. GENERAL SIGNIFICANCE: For potential antidiabetic applications, MPC inhibitors should target the liver without undesired inhibition of mitochondrial pyruvate metabolism in the skeletal muscles or pancreatic beta-cells in order to avoid dual effects on glycemia.


Subject(s)
Diabetes Mellitus , Glucose , United States , Humans , Mice , Animals , Glucose/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/pharmacology , Mitochondrial Membrane Transport Proteins/metabolism , Liver/metabolism , Diabetes Mellitus/metabolism , Hypoglycemic Agents/pharmacology , Pyruvates/metabolism , Pyruvates/pharmacology
3.
J Am Heart Assoc ; 12(17): e029817, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37655472

ABSTRACT

Background Thrombolysis and endovascular thrombectomy are the primary treatment for ischemic stroke. However, due to the limited time window and the occurrence of adverse effects, only a small number of patients can genuinely benefit from recanalization. Intraarterial injection of rtPA (recombinant tissue plasminogen activator) based on arterial thrombectomy could improve the prognosis of patients with acute ischemic stroke, but it could not reduce the incidence of recanalization-related adverse effects. Recently, selective brain hypothermia has been shown to offer neuroprotection against stroke. To enhance the recanalization rate of ischemic stroke and reduce the adverse effects such as tiny thrombosis, brain edema, and hemorrhage, we described for the first time a combined approach of hypothermia and thrombolysis via intraarterial hypothermic rtPA. Methods and Results We initially established the optimal regimen of hypothermic rtPA in adult rats subjected to middle cerebral artery occlusion. Subsequently, we explored the mechanism of action mediating hypothermic rtPA by probing reduction of brain tissue temperature, attenuation of blood-brain barrier damage, and sequestration of inflammation coupled with untargeted metabolomics. Hypothermic rtPA improved neurological scores and reduced infarct volume, while limiting hemorrhagic transformation in middle cerebral artery occlusion rats. These therapeutic outcomes of hypothermic rtPA were accompanied by reduced brain temperature, glucose metabolism, and blood-brain barrier damage. A unique metabolomic profile emerged in hypothermic rtPA-treated middle cerebral artery occlusion rats characterized by downregulated markers for energy metabolism and inflammation. Conclusions The innovative use of hypothermic rtPA enhances their combined, as opposed to stand-alone, neuroprotective effects, while reducing hemorrhagic transformation in ischemic stroke.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hypothermia , Ischemic Stroke , Stroke , Animals , Rats , Tissue Plasminogen Activator , Ischemic Stroke/drug therapy , Neuroprotection , Infarction, Middle Cerebral Artery/drug therapy , Stroke/prevention & control , Inflammation , Thrombolytic Therapy
5.
Nat Commun ; 14(1): 290, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653415

ABSTRACT

Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.


Subject(s)
Brassicaceae , Herbicides , Humans , Animals , Brassicaceae/genetics , Plant Weeds/genetics , Soil , Life Cycle Stages
6.
Sci Rep ; 12(1): 11830, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35821263

ABSTRACT

Rheumatoid arthritis (RA) is characterized by joint infiltration of immune cells and synovial inflammation which leads to progressive disability. Current treatments improve the disease outcome, but the unmet medical need is still high. New discoveries over the last decade have revealed the major impact of cellular metabolism on immune cell functions. So far, a comprehensive understanding of metabolic changes during disease development, especially in the diseased microenvironment, is still limited. Therefore, we studied the longitudinal metabolic changes during the development of murine arthritis by integrating metabolomics and transcriptomics data. We identified an early change in macrophage pathways which was accompanied by oxidative stress, a drop in NAD+ level and induction of glucose transporters. We discovered inhibition of SIRT1, a NAD-dependent histone deacetylase and confirmed its dysregulation in human macrophages and synovial tissues of RA patients. Mining this database should enable the discovery of novel metabolic targets and therapy opportunities in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Sirtuin 1 , Animals , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Humans , Inflammation/metabolism , Mice , Sirtuin 1/metabolism , Synovial Membrane/metabolism
7.
J Clin Endocrinol Metab ; 107(10): 2833-2843, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35867405

ABSTRACT

CONTEXT: During an asymptomatic prediabetic state, the functional ß-cell mass decreases to a critical threshold, triggering diabetes and related symptoms. To date, there are no reliable readouts able to capture in vivo a potential drop of the ß-cell mass. OBJECTIVE: Beside its use as a short-term marker of glycemic control, the deoxyhexose 1,5-anhydroglucitol was identified in rodents as a circulating biomarker of the functional ß-cell mass already in the asymptomatic prediabetic stage. The present study investigated the putative corresponding relevance of circulating 1,5-anhydroglucitol in different human cohorts. METHODS: We analyzed clinical and blood parameters in patients with established type 2 diabetes and subjects considered at high risk of developing diabetes, as well as patients with no history of diabetes scheduled for pancreaticoduodenectomy. RESULTS: Circulating 1,5-anhydroglucitol was reduced in type 2 diabetic patients, negatively correlating with fasting plasma glucose (P < 0.0001) and hemoglobin A1c (P < 0.0001). In healthy subjects, 1,5-AG levels positively correlated with body mass index (P = 0.004) and Homeostatic Model Assessment of Insulin Resistance %S (P < 0.03) and was particularly high in nondiabetic obese individuals, potentially accounting for compensatory ß-cell expansion. Patients with no history of diabetes undergoing pancreaticoduodenectomy exhibited a 50% reduction of circulating 1,5-anhydroglucitol levels following surgery leading to an acute loss of their ß-cell mass (P = 0.002), regardless their glucose tolerance status. CONCLUSION: In summary, plasma concentration of 1,5-anhydroglucitol follows the ß-cell mass and its noninvasive monitoring may alert about the loss of ß cells in subjects at risk for diabetes, an event that cannot be captured by other clinical parameters of glycemic control.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Biomarkers , Blood Glucose , Deoxyglucose , Glycated Hemoglobin/analysis , Humans , Phenotype , Prediabetic State/diagnosis , Research Subjects
8.
Poult Sci ; 101(5): 101799, 2022 May.
Article in English | MEDLINE | ID: mdl-35366422

ABSTRACT

Duck circovirus (DuCV) infection occurs frequently in ducks in China and is generally believed to lead to immunosuppression and secondary infection, though there has been a lack of detailed research and direct evidence. In this study, one-day-old Cherry Valley ducklings were artificially infected with DuCV alone and co-infected with DuCV and Avian Pathogenic Escherichia coli (APEC). The immune indexes at 32 d old were systematically monitored, including immune organ weight, lymphocyte transformation rate, IL-10, IL-12, soluble CD4 (sCD4), soluble CD8 (sCD8), IFN-γ, viral loads in each organ, APEC colonization, and so on. The results showed the development of immune organs in ducklings was affected, resulting in a decrease in the lymphocyte transformation rate (LTR), IL-12, sCD4, sCD8, IFN-γ and an increase in IL-10 content at 8 to 32 d postinfection (dpi). In the detection of virus loads in some organs, it was found that 8 dpi, DuCV existed stably in various organs, suggesting the importance of preventing and controlling the virus in the early stage of culture. The results of exploring the DuCV infection that shows some influence on secondary infection by APEC. The results showed that DuCV infection could significantly enhance the pathogenicity of APEC and the colonization ability of APEC in vivo. DuCV can induce more serious APEC infection in 24 dpi than in 14 dpi. Based on the above results, it can be concluded that DuCV infection will affect the immune system, cause immunosuppression, and lead to more serious secondary infection.


Subject(s)
Circoviridae Infections , Coinfection , Ducks , Escherichia coli Infections , Poultry Diseases , Animals , CD4 Antigens , CD8 Antigens , Circoviridae Infections/complications , Circoviridae Infections/veterinary , Circovirus , Coinfection/veterinary , Ducks/immunology , Ducks/microbiology , Ducks/virology , Escherichia coli , Escherichia coli Infections/complications , Escherichia coli Infections/veterinary , Immunity , Interferon-gamma , Interleukin-10 , Interleukin-12 , Poultry Diseases/microbiology , Poultry Diseases/virology , Viral Load
9.
Sci Rep ; 11(1): 19385, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588517

ABSTRACT

TNF is a central cytokine in the pathogenesis of rheumatoid arthritis (RA). Elevated level of TNF causes local inflammation that affects immune cells and fibroblast-like synoviocytes (FLS). Nowadays, only 20-30% of patients experience remission after the standard of care therapy-antibodies against TNF. Interestingly, responders show reduced levels of GLUT1 and GAPDH, highlighting a potential link to cellular metabolism. The aim of the study was to investigate whether TNF directly affects the metabolic phenotype of FLS. Real-time respirometry displayed TNF-induced upregulation of glycolysis along with a modest increase of oxidative phosphorylation in FLS from healthy donors. In addition, TNF stimulation enhanced HIF1A and GLUT1 expression. The upregulation of HIF1A and GLUT1 reflects their enriched level in FLS from RA patients (RA-FLS). The inhibition of TAK1, HIF1a and hexokinase deciphered the importance of TNF/TAK1/HIF1A/glycolysis signaling axis. To prove that inhibition of glycolysis reduced the pathogenic phenotype, we showed that 2-deoxyglucose, a hexokinase inhibitor, partially decreased secretion of RA biomarkers. In summary, we identified a direct role of TNF on glycolytic reprogramming of FLS and confirmed the potency of immunometabolism for RA. Further studies are needed to evaluate the therapeutic impact especially regarding non-responder data.


Subject(s)
Arthritis, Rheumatoid/immunology , Glucose Transporter Type 1/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Synoviocytes/immunology , Tumor Necrosis Factor-alpha/immunology , Cells, Cultured , Humans , Synoviocytes/cytology
10.
Chem Soc Rev ; 50(17): 9430-9442, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34286715

ABSTRACT

Owing to high strain energy, molecules with trans-fused bicyclo[3.3.0]octane ring systems are very difficult to synthesize, and there are very few approaches to access them. Recently, a number of natural products with such ring systems have been made by the synthetic community. However, there has been no review in this field before. This review provides a systematic and comprehensive discussion on the synthesis of natural products containing trans-fused bicyclo[3.3.0]octanes and the historical context of this work. The prospects for future research in this field are also discussed. Covering the literature before 2021, this review aims to offer a helpful reference for total synthesis of highly strained natural products containing trans-fused bicyclo[3.3.0]octane ring systems.


Subject(s)
Biological Products , Octanes , Bridged Bicyclo Compounds
11.
Org Lett ; 22(22): 9139-9144, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33170728

ABSTRACT

A copper-catalyzed reduction of alkynes to alkanes and deuterated alkanes is described under transfer hydrogenation and transfer deuteration conditions. Commercially available alcohols and silanes are used interchangeably with their deuterated analogues as the hydrogen or deuterium sources. Transfer deuteration of terminal and internal aryl alkynes occurs with high levels of deuterium incorporation. Alkyne-containing complex natural product analogues undergo transfer hydrogenation and transfer deuteration selectively, in high yield. Mechanistic experiments support the reaction occurring through a cis-alkene intermediate and demonstrate the possibility for a regioselective alkyne transfer hydrodeuteration reaction.

12.
Sci Rep ; 10(1): 14052, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32820201

ABSTRACT

C57BL/6J-related mouse strains are widely used animal models for diet-induced obesity (DIO). Multiple vendors breed C57BL/6J-related substrains which may introduce genetic drift and environmental confounders such as microbiome differences. To address potential vendor/substrain specific effects, we compared DIO of C57BL/6J-related substrains from three different vendors: C57BL/6J (Charles Rivers), C57BL/6JBomTac (Taconic Bioscience) and C57BL/6JRj (Janvier). After local acclimatization, DIO was induced by either a high-fat diet (HFD, 60% energy from fat) or western diet (WD, 42% energy from fat supplemented with fructose in the drinking water). All three groups on HFD gained a similar amount of total body weight, yet the relative amount of fat percentage and mass of inguinal- and epididymal white adipose tissue (iWAT and eWAT) was lower in C57BL/6JBomTac compared to the two other C57BL/6J-releated substrains. In contrast to HFD, the three groups on WD responded differently in terms of body weight gain, where C57BL/6J was particularly prone to WD. This was associated with a relative higher amount of eWAT, iWAT, and liver triglycerides. Although the HFD and WD had significant impact on the microbiota, we did not observe any major differences between the three groups of mice. Together, these data demonstrate significant differences in HFD- and WD-induced adiposity in C57BL/6J-related substrains, which should be considered in the design of animal DIO studies.


Subject(s)
Diet, High-Fat , Absorptiometry, Photon , Animals , Body Weight , Glucose/administration & dosage , Insulin/blood , Liver/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Organ Size , Species Specificity , Triglycerides/metabolism , Weight Gain
14.
Diabetes ; 68(12): 2272-2286, 2019 12.
Article in English | MEDLINE | ID: mdl-31537525

ABSTRACT

Identification of individuals with decreased functional ß-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic ß-cell defect remains unsuccessful. Metabolomics has emerged as a powerful tool in providing readouts of early disease states before clinical manifestation. We aimed at identifying novel plasma biomarkers for loss of functional ß-cell mass in the asymptomatic prediabetes stage. Nontargeted and targeted metabolomics were applied in both lean ß-Phb2-/- (ß-cell-specific prohibitin-2 knockout) mice and obese db/db (leptin receptor mutant) mice, two distinct mouse models requiring neither chemical nor dietary treatments to induce spontaneous decline of functional ß-cell mass promoting progressive diabetes development. Nontargeted metabolomics on ß-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, respectively. Machine learning analysis pointed to deoxyhexose sugars consistently reduced at the asymptomatic prediabetes stage, including in db/db mice, showing strong correlation with the gradual loss of ß-cells. Further targeted metabolomics by gas chromatography-mass spectrometry uncovered the identity of the deoxyhexose, with 1,5-anhydroglucitol displaying the most substantial changes. In conclusion, this study identified 1,5-anhydroglucitol as associated with the loss of functional ß-cell mass and uncovered metabolic similarities between liver and plasma, providing insights into the systemic effects caused by early decline in ß-cells.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Metabolome , Animals , Biomarkers/metabolism , Diabetes Mellitus, Type 2/pathology , Gas Chromatography-Mass Spectrometry , Insulin-Secreting Cells/pathology , Machine Learning , Metabolomics , Mice , Mice, Knockout , Prohibitins , Repressor Proteins/genetics , Repressor Proteins/metabolism
15.
J Biol Chem ; 294(34): 12581-12598, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31285263

ABSTRACT

Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2-/-) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.


Subject(s)
GTP Phosphohydrolases/metabolism , Gluconeogenesis , Hepatocytes/metabolism , Mitochondria/metabolism , Repressor Proteins/metabolism , Animals , Apoptosis , Cell Respiration , Hepatocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prohibitins , Repressor Proteins/deficiency
16.
EMBO J ; 38(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30842098

ABSTRACT

Heteroblasty refers to a phenomenon that a plant produces morphologically or functionally different lateral organs in an age-dependent manner. In the model plant Arabidopsis thaliana, the production of trichomes (epidermal leaf hairs) on the abaxial (lower) side of leaves is a heteroblastic mark for the juvenile-to-adult transition. Here, we show that the heteroblastic development of abaxial trichomes is regulated by a spatiotemporally regulated complex comprising the leaf abaxial fate determinant (KAN1) and the developmental timer (miR172-targeted AP2-like proteins). We provide evidence that a short-distance chromatin loop brings the downstream enhancer element into close association with the promoter elements of GL1, which encodes a MYB transcription factor essential for trichome initiation. During juvenile phase, the KAN1-AP2 repressive complex binds to the downstream sequence of GL1 and represses its expression through chromatin looping. As plants age, the gradual reduction in AP2-like protein levels leads to decreased amount of the KAN1-AP2 complex, thereby licensing GL1 expression and the abaxial trichome initiation. Our results thus reveal a novel molecular mechanism by which a heteroblastic trait is governed by integrating age and leaf polarity cue in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Leaves/growth & development , Promoter Regions, Genetic , Spatio-Temporal Analysis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , MicroRNAs/genetics , Mutation , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
17.
Diabetes ; 67(10): 1949-1961, 2018 10.
Article in English | MEDLINE | ID: mdl-30002133

ABSTRACT

Ammonia detoxification and gluconeogenesis are major hepatic functions mutually connected through amino acid metabolism. The liver is rich in glutamate dehydrogenase (GDH) that catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate and ammonia, thus bridging amino acid-to-glucose pathways. Here we generated inducible liver-specific GDH-knockout mice (HepGlud1-/- ) to explore the role of hepatic GDH on metabolic homeostasis. Investigation of nitrogen metabolism revealed altered ammonia homeostasis in HepGlud1-/- mice characterized by increased circulating ammonia associated with reduced detoxification process into urea. The abrogation of hepatic GDH also modified energy homeostasis. In the fasting state, HepGlud1-/- mice could barely produce glucose in response to alanine due to impaired liver gluconeogenesis. Compared with control mice, lipid consumption in HepGlud1-/- mice was favored over carbohydrates as a compensatory energy fuel. The changes in energy partitioning induced by the lack of liver GDH modified the circadian rhythm of food intake. Overall, this study demonstrates the central role of hepatic GDH as a major regulator for the maintenance of ammonia and whole-body energy homeostasis.


Subject(s)
Ammonia/metabolism , Gluconeogenesis/physiology , Glutamate Dehydrogenase/metabolism , Liver/metabolism , Animals , Female , Gluconeogenesis/genetics , Homeostasis/genetics , Homeostasis/physiology , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Liver/enzymology , Male , Mice , Mice, Knockout , Mice, Mutant Strains , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism
18.
J Org Chem ; 83(16): 8995-9007, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29949359

ABSTRACT

The triplet excited state of thioxanthone produced by photolysis undergoes reversible triplet energy transfer with a trimethylene-linked benzothiophene-2-carboxanilide ring system. The ensuing electrocyclic ring closure of the anilide moiety produces a putative zwitterionic intermediate that is capable of expelling leaving groups (LG-) from the C-3 position of the benzothiophene ring. Stern-Volmer quenching studies with cyclohexadiene as quencher furnish the rate constants for the triplet excitation transfer in the forward and reverse directions, which can be expressed as an equilibrium constant K = 0.058. Overall, the rate of the triplet excited state reaction becomes K × kr = 5.7 × 104 s-1 for LG- = Cl-, where kr is the triplet decay rate of the C-3 chloro-substituted benzothiophene-2-carboxanilide, found through Stern-Volmer quenching. The high quantum efficiencies found for the trimethylene-linked systems are due to K × kr being competitive with the triplet excited state decay of the thioxanthone of kd = 7.7 × 104 s-1. On the basis of Φisc = 0.68, the overall expected quantum yield for direct photolysis should be 0.50 for LG- = Cl- as compared to 0.41 at 25 °C experimentally. Φ decreases with increasing basicity of the leaving group (LG- = Cl-, (EtO)2PO2-, PhCH2CO2-, PhS-, and PhCH2S-).

19.
BMC Plant Biol ; 17(1): 246, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258418

ABSTRACT

BACKGROUND: Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. RESULTS: In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm2 in transgenic fruits was less than wild type. CONCLUSIONS: Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.


Subject(s)
Aquaporins/genetics , Droughts , Fruit/genetics , Gene Expression Regulation, Plant , Malus/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Aquaporins/chemistry , Aquaporins/metabolism , Ectopic Gene Expression , Fruit/growth & development , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Malus/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Sequence Alignment , Stress, Physiological , Water/metabolism
20.
Insect Biochem Mol Biol ; 43(9): 809-19, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23796436

ABSTRACT

The short neuropeptide F (sNPF), a neuropeptide in the central nervous system (CNS) of Drosophila melanogaster, is expressed in a large population of diverse neurons of brain. Most of these neurons are intrinsic interneurons of the mushroom bodies, which are the most prominent insect bilateral CNS structures that regulate memory and sleep. However, its role in sleep regulation still remains elusive. Here, we showed that sNPF-deficient female and male flies exhibit sleep enhancement with an increase of sleep bout duration. Loss of function of sNPF and sNPFR1 also elevated sleep. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by aberrant sNPF signaling, since sleep deprivation increased transcription of sNPF and wakefulness at night in control flies but not in the sNPF mutant flies, suggesting that sNPF autoregulation plays an important role in sleep homeostasis. We further verified that sNPF signal elevated cAMP levels, and subsequently activated the downstream CREB transcription factor. The duration of sleep was found to be inversely related to cAMP signaling and CREB activity in the mushroom bodies. Thus, we concluded that sleep might be regulated by sNPF through modulating the cAMP-PKA-CREB signal pathway in vivo.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Neuropeptides/metabolism , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cyclic AMP/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Male , Neuropeptides/genetics , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Signal Transduction , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...